Accuracy Improvement With Weight Mapping Strategy and Output Transformation for STT-MRAM-Based Computing-in-Memory

被引:0
作者
Wang, Xianggao [1 ,2 ]
Wei, Na [2 ]
Gao, Shifan [1 ]
Wu, Wenhao [2 ,3 ]
Zhao, Yi [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
[2] China Nanhu Acad Elect & Informat Technol, Jiaxing 314001, Peoples R China
[3] East China Normal Univ, Sch Integrated Circuits, Shanghai 200241, Peoples R China
来源
IEEE JOURNAL ON EXPLORATORY SOLID-STATE COMPUTATIONAL DEVICES AND CIRCUITS | 2024年 / 10卷
关键词
Circuits; Accuracy; Artificial intelligence; Resistance; Nonvolatile memory; Computer architecture; Neural networks; Linearity; Arrays; Transistors; Artificial intelligence (AI); computing-in-memory (CiM); linear transformation; spin-transfer torque magnetic random access memory (STT-MRAM); weight mapping; MACRO;
D O I
10.1109/JXCDC.2024.3478360
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This work presents an analog computing-in-memory (CiM) macro with spin-transfer torque magnetic random access memory (STT-MRAM) and 28-nm CMOS technology. The adopted CiM bitcell uses a differential scheme and balances the input resistance to minimize the nonideal factors during multiply-accumulate (MAC) operations. Specialized peripheral circuits were designed for the current-scheme CiM architecture. More importantly, strategies of accuracy improvement were innovatively proposed as follows: 1) mapping most significant bit (MSB) to the far side of the MRAM array and 2) output linear transformation based on the reference columns. Circuit-level simulation verified the functionality and performance improvement of the CiM macro based on the MNIST and CIFAR-10 datasets, realizing a 3% and 5% accuracy loss compared with the benchmark, respectively. The 640-GOPS (8 bit) throughput, 34.6-TOPS/mm(2) area compactness, and 83.3-TOPS/W energy efficiency demonstrate the advantages of STT-MRAM CiM in the coming AI era.
引用
收藏
页码:75 / 81
页数:7
相关论文
共 24 条
[1]   Magnetoresistive Circuits and Systems: Embedded Non-Volatile Memory to Crossbar Arrays [J].
Agrawal, Amogh ;
Wang, Cheng ;
Sharma, Tanvi ;
Roy, Kaushik .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2021, 68 (06) :2281-2294
[2]   A fully integrated reprogrammable memristor-CMOS system for efficient multiply-accumulate operations [J].
Cai, Fuxi ;
Correll, Justin M. ;
Lee, Seung Hwan ;
Lim, Yong ;
Bothra, Vishishtha ;
Zhang, Zhengya ;
Flynn, Michael P. ;
Lu, Wei D. .
NATURE ELECTRONICS, 2019, 2 (07) :290-299
[3]  
Cai H., 2023, 2023 IEEE INT SOL ST, P500
[4]   Proposal of Analog In-Memory Computing With Magnified Tunnel Magnetoresistance Ratio and Universal STT-MRAM Cell [J].
Cai, Hao ;
Guo, Yanan ;
Liu, Bo ;
Zhou, Mingyang ;
Chen, Juntong ;
Liu, Xinning ;
Yang, Jun .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2022, 69 (04) :1519-1531
[5]   An 89TOPS/W and 16.3TOPS/mm2 All-Digital SRAM-Based Full-Precision Compute-In Memory Macro in 22nm for Machine-Learning Edge Applications [J].
Chih, Yu-Der ;
Lee, Po-Hao ;
Fujiwara, Hidehiro ;
Shih, Yi-Chun ;
Lee, Chia-Fu ;
Naous, Rawan ;
Chen, Yu-Lin ;
Lo, Chieh-Pu ;
Lu, Cheng-Han ;
Mori, Haruki ;
Zhao, Wei-Cheng ;
Sun, Dar ;
Sinangil, Mahmut E. ;
Chen, Yen-Huei ;
Chou, Tan-Li ;
Akarvardar, Kerem ;
Liao, Hung-Jen ;
Wang, Yih ;
Chang, Meng-Fan ;
Chang, Tsung-Yung Jonathan .
2021 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC), 2021, 64 :252-+
[6]  
Deaville P., 2022, 2022 IEEE S VLSI TEC, P268
[7]  
Fick D., 2022, IEDM, P21
[8]   A Nonvolatile Compute-in-Memory Macro Using Voltage-Controlled MRAM and In Situ Magnetic-to-Digital Converter [J].
Jacob, Vinod Kurian ;
Yang, Jiyue ;
He, Haoran ;
Gupta, Puneet ;
Wang, Kang L. ;
Pamarti, Sudhakar .
IEEE JOURNAL ON EXPLORATORY SOLID-STATE COMPUTATIONAL DEVICES AND CIRCUITS, 2023, 9 (01) :56-64
[9]  
Jia Yangqing, 2014, Learning semantic image representations at a large scale
[10]   A 40-nm MLC-RRAM Compute-in-Memory Macro With Sparsity Control, On-Chip Write-Verify, and Temperature-Independent ADC References [J].
Li, Wantong ;
Sun, Xiaoyu ;
Huang, Shanshi ;
Jiang, Hongwu ;
Yu, Shimeng .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2022, 57 (09) :2868-2877