Reactive compatibilization of poly(l-lactic acid)/poly(propylene carbonate) blends: Thermal, thermomechanical, and morphological properties

被引:0
|
作者
机构
[1] Hwang, Sung Wook
[2] Park, Dong Ho
[3] Kang, Dong Ho
[4] Lee, Sang Bong
[5] Shim, Jin Kie
来源
Shim, Jin Kie (jkshim@kitech.re.kr) | 1600年 / John Wiley and Sons Inc卷 / 133期
关键词
Poly(l-lactic acid) (PLLA) was blended with poly(propylene carbonate) (PPC) with various compositions by a melt-blending process to evaluate their general properties for a potential flexible packaging field. The mechanical properties; including the tensile strength and modulus; revealed a tendency to decrease with the addition of ductile PPC; this was induced by the poor interfacial adhesion between PLLA and PPC with the cavities and clear edges and was observed through morphological observation. Reactive compatibilization was applied to improve the interfacial adhesion between PLLA and PPC; and the elongation at break was profoundly enhanced because of the improved interfacial adhesion between the two phases. The compatibilized PLLA/PPC blends showed considerable improvements in the storage modulus in the transition region with stable thermal stability; this could be a benefit for thermal processing. The addition of PPC had a great effect on the solidlike behavior and increased the elasticity of the PLLA/PPC blends. Up to 2.0 phr maleic anhydride showed a great efficiency in enhancing the dynamic storage modulus and complex viscosity of the PLLA/PPC blends. We also confirmed that it was feasible to fabricate PLLA/PPC blends with controllable barrier properties with combination of PLLA and PPC under reactive compatibilization while retaining the biodegradability. © 2016 Wiley Periodicals; Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
相关论文
共 50 条
  • [1] Reactive compatibilization of poly(l-lactic acid)/poly(propylene carbonate) blends: Thermal, thermomechanical, and morphological properties
    Hwang, Sung Wook
    Park, Dong Ho
    Kang, Dong Ho
    Lee, Sang Bong
    Shim, Jin Kie
    JOURNAL OF APPLIED POLYMER SCIENCE, 2016, 133 (18)
  • [2] Compatibilization of the poly(lactic acid)/poly(propylene carbonate) blends through in situ formation of poly(lactic acid)-b-poly(propylene carbonate) copolymer
    Wang, Zhao
    Zhang, Min
    Liu, Zhengying
    Zhang, Shuyang
    Cao, Zhiqiang
    Yang, Wei
    Yang, Mingbo
    JOURNAL OF APPLIED POLYMER SCIENCE, 2018, 135 (11)
  • [3] Thermal and Mechanical Properties of Poly(L-lactic Acid) Films Plasticized with Propylene Carbonate
    Lee, Ganggook
    Lee, Hee Min
    Kim, Young Ho
    POLYMER-KOREA, 2019, 43 (01) : 113 - 122
  • [4] Poly(para-dioxanone) and poly(l-lactic acid) blends:: Thermal, mechanical, and morphological properties
    Pezzin, APT
    van Ekenstein, GORA
    Zavaglia, CAC
    ten Brinke, G
    Deuk, EAR
    JOURNAL OF APPLIED POLYMER SCIENCE, 2003, 88 (12) : 2744 - 2755
  • [5] Preparation and properties of biodegradeble blends of poly(propylene carbonate) and poly(lactic acid)
    Chen, Wei-Feng
    Xiao, Min
    Wang, Shuan-Jin
    Wen, Li-Shi
    Meng, Yue-Zhong
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2010, 26 (03): : 142 - 145
  • [6] Properties of poly(L-lactic acid)/pluronic blends
    Hata, Yoshihiro
    Nakane, Koji
    Ogihara, Takashi
    Ogata, Nobuo
    SEN-I GAKKAISHI, 2008, 64 (04) : 96 - 101
  • [7] Thermal and Morphological Properties of Poly(L-Lactic Acid)/Poly(D-Lactic Acid)-B-Polycaprolactone Diblock Copolymer Blends
    Weidner, Eckhard
    Kabasci, Stephan
    Kopitzky, Rodion
    Moerbitz, Philip
    MATERIALS, 2020, 13 (11)
  • [8] Reactive compatibilization of biodegradable blends of poly(lactic acid) and poly(ε-caprolactone)
    Wang, L
    Ma, W
    Gross, RA
    McCarthy, SP
    POLYMER DEGRADATION AND STABILITY, 1998, 59 (1-3) : 161 - 168
  • [9] The compatibilization of poly (propylene carbonate)/poly (lactic acid) blends in presence of core-shell starch nanoparticles
    Dong, Xinyi
    Liu, Li
    Wang, Yang
    Li, Ting
    Wu, Zhenggui
    Yuan, Hao
    Ma, Piming
    Shi, Dongjian
    Chen, Mingqing
    Dong, Weifu
    CARBOHYDRATE POLYMERS, 2021, 254
  • [10] Effect of the molecular weight of poly(vinyl acetate) on the polymorphism and thermomechanical properties of poly(L-lactic acid)/poly(D-lactic acid) blends
    Yi Li
    Lijia Zhao
    Changyu Han
    Liguang Xiao
    Yancun Yu
    Guangbin Zhou
    Mingzhi Xu
    Journal of Thermal Analysis and Calorimetry, 2022, 147 : 3171 - 3184