ATAT: Astronomical Transformer for time series and Tabular data

被引:1
|
作者
Cabrera-Vives, G. [1 ,2 ,3 ]
Moreno-Cartagena, D. [1 ,2 ]
Astorga, N. [3 ,4 ,5 ]
Reyes-Jainaga, I. [3 ,4 ,6 ]
Foerster, F. [3 ,4 ,7 ]
Huijse, P. [3 ,8 ,9 ]
Arredondo, J. [3 ,4 ]
Munoz Arancibia, A. M. [3 ,4 ]
Bayo, A. [10 ,11 ]
Catelan, M. [3 ,12 ,13 ]
Estevez, P. A. [3 ,5 ]
Sanchez-Saez, P. [3 ,10 ]
Alvarez, A. [3 ,4 ]
Castellanos, P. [2 ]
Gallardo, P. [2 ,3 ,4 ]
Moya, A. [3 ,4 ]
Rodriguez-Mancini, D. [6 ]
机构
[1] Univ Concepcion, Dept Comp Sci, Concepcion, Chile
[2] Univ Concepcion, Ctr Data & Artificial Intelligence, Edmundo Larenas 310, Concepcion, Chile
[3] Millennium Inst Astrophys MAS, Nuncio Monsenor Sotero Sanz 100,Of 104, Santiago, Chile
[4] Univ Chile, Ctr Math Modeling, Beauchef 851, Santiago 8320000, Chile
[5] Univ Chile, Dept Elect Engn, Ave Tupper 2007, Santiago 8320000, Chile
[6] Data Observ Fdn, Eliodoro Yanez 2990,Oficina A5, Santiago, Chile
[7] Univ Chile, Data & Artificial Intelligence Initiat ID&IA, Santiago, Chile
[8] Katholieke Univ Leuven, Dept Phys & Astron, Inst Astron IvS, Celestijnenlaan 200D, B-3001 Leuven, Belgium
[9] Univ Austral Chile, Inst Informat, Fac Ciencias Ingn, Gen Lagos 2086, Valdivia, Chile
[10] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany
[11] Univ Valparaiso, Inst Fis & Astron, Ave Gran Bretana 1111, Casilla 5030, Chile
[12] Pontificia Univ Catolica Chile, Inst Astrofis, Ave Vicuna Mackenna 4860, Santiago 7820436, Chile
[13] Pontificia Univ Catolica Chile, Ctr Astroingn, Ave Vicuna Mackenna 4860, Santiago, Chile
关键词
methods: data analysis; methods: statistical; surveys; supernovae: general; stars: variables: general; ALERCE BROKER SYSTEM; NEURAL-NETWORKS; CLASSIFICATION; LSST;
D O I
10.1051/0004-6361/202449475
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. The advent of next-generation survey instruments, such as the Vera C. Rubin Observatory and its Legacy Survey of Space and Time (LSST), is opening a window for new research in time-domain astronomy. The Extended LSST Astronomical Time-Series Classification Challenge (ELAsTiCC) was created to test the capacity of brokers to deal with a simulated LSST stream. Aims. Our aim is to develop a next-generation model for the classification of variable astronomical objects. We describe ATAT, the Astronomical Transformer for time series And Tabular data, a classification model conceived by the ALeRCE alert broker to classify light curves from next-generation alert streams. ATAT was tested in production during the first round of the ELAsTiCC campaigns. Methods. ATAT consists of two transformer models that encode light curves and features using novel time modulation and quantile feature tokenizer mechanisms, respectively. ATAT was trained on different combinations of light curves, metadata, and features calculated over the light curves. We compare ATAT against the current ALeRCE classifier, a balanced hierarchical random forest (BHRF) trained on human-engineered features derived from light curves and metadata. Results. When trained on light curves and metadata, ATAT achieves a macro F1 score of 82.9 +/- 0.4 in 20 classes, outperforming the BHRF model trained on 429 features, which achieves a macro F1 score of 79.4 +/- 0.1. Conclusions. The use of transformer multimodal architectures, combining light curves and tabular data, opens new possibilities for classifying alerts from a new generation of large etendue telescopes, such as the Vera C. Rubin Observatory, in real-world brokering scenarios.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Attention Augmented Convolutional Transformer for Tabular Time-series
    Shankaranarayana, Sharath M.
    Runje, Davor
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 537 - 541
  • [2] Uncovering Periods in Astronomical Time Series With Few Data
    O. Cardona
    M. A. Lópes-Castillo
    M. Reyes-Muñoz
    Astrophysics, 2014, 57 : 146 - 158
  • [3] Uncovering Periods in Astronomical Time Series With Few Data
    Cardona, O.
    Lopes-Castillo, M. A.
    Reyes-Munoz, M.
    ASTROPHYSICS, 2014, 57 (01) : 146 - 158
  • [4] A generic sparse regression imputation method for time series and tabular data
    Salamanis, Athanasios I.
    Gravvanis, George A.
    Kotsiantis, Sotiris
    Giannoutakis, Konstantinos M.
    KNOWLEDGE-BASED SYSTEMS, 2023, 279
  • [5] VARTOOLS: A program for analyzing astronomical time-series data
    Hartman, J. D.
    Bakos, G. A.
    ASTRONOMY AND COMPUTING, 2016, 17 : 1 - 72
  • [6] Data mining highly multiple time series of astronomical observations
    Huang, F
    DATA MINING V: DATA MINING, TEXT MINING AND THEIR BUSINESS APPLICATIONS, 2004, 10 : 375 - 382
  • [7] An Efficient Retrieval Method for Astronomical Catalog Time Series Data
    Li, Bingyao
    Yu, Ce
    Hu, Xiaoteng
    Xiao, Jian
    Tang, Shanjiang
    Li, Lianmeng
    Ma, Bin
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2018, PT I, 2018, 11334 : 284 - 298
  • [8] FATA-Trans: Field And Time-Aware Transformer for Sequential Tabular Data
    Zhang, Dongyu
    Wang, Liang
    Dai, Xin
    Jain, Shubham
    Wang, Junpeng
    Fan, Yujie
    Yeh, Chin-Chia Michael
    Zheng, Yan
    Zhuang, Zhongfang
    Zhang, Wei
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 3247 - 3256
  • [9] Coherent Multi-Table Data Synthesis for Tabular and Time-Series Data with GANs
    Elliker, Clement
    Tonnelier, Emeric
    Shabou, Aymen
    PROCEEDINGS OF THE FOURTEENTH ACM CONFERENCE ON DATA AND APPLICATION SECURITY AND PRIVACY, CODASPY 2024, 2024, : 245 - 252
  • [10] Data-mining massive time series astronomical data: Challenges, problems and solutions
    Department of Mathematics, The Univ. of Hong Kong, Pokfulam Rd., Hong Kong, Hong Kong
    不详
    Inf Software Technol, 9 (545-556):