On the effect of the cutting speed of a water jet abrasive cutting process on the surface morphology of the low carbon steel S235

被引:0
作者
Košťál P. [1 ]
Moravčíková J. [1 ]
Delgado Sobrino D.R. [1 ]
Holubek R. [1 ]
机构
[1] Slovak University of Technology, Faculty of Materials Science and Technology, Institute of Production Technology, J. Bottu 25, Trnava
关键词
Abrasive water jet machining; Cutting speed; Steel S235; Surface roughness;
D O I
10.4028/www.scientific.net/MSF.919.92
中图分类号
学科分类号
摘要
In order to increase the cutting and breaking capacity of abrasive water jet machining (AWJM), abrasive particles are usually added to water. The AWJM technology is generally used for harder and heavier machinable materials like thick sheets, composite materials with metal and ceramic properties and others within these categories to just cite a few. The contribution is mainly focused on the analysis of the surface properties of the steel S235 after the cutting process, and this depending on the cutting speed of the water jet. Three different cutting speeds were used for the analysis because this cutting parameter significantly affects the resulting quality of the machined surface. A contact profile method was used to analyze surface roughness. The observed surface roughness parameters were the Ra, Rt and Rz respectively. The above-mentioned surface roughness parameters were measured in three positions, i.e.: at the inlet, middle and exit positions of the water jet with respect to the machined material. © 2018 Trans Tech Publications, Switzerland.
引用
收藏
页码:92 / 100
页数:8
相关论文
共 16 条
[1]  
Velisek K., Kostal P., Pechacek F., Stroje a zariadenia pre špeciálne technológie, Bratislava: Vydavateľstvo STU, (2006)
[2]  
Sobotova L., Karkova M., Kvalita Rezacej Vody Pri technológií Delenia materiálov vodným lúčom, (2012)
[3]  
Hloch S., Hlavacek J., Vasilko K., Carach J., Samardzic I., Kozak D., Hlavaty I., Scucka J.J., Klich J., Klichova D., D., Abrasive waterjet (AWJ) titanium tangential turning evaluation, Metalurgija, 53, pp. 537-540, (2014)
[4]  
Carach J., Hloch S., Hlavacek P., Scucka J., Martinec P., Petru J., Zlamal T., Zelenak M., Monka P., Lehocka D., Krolczyk J., Tangential turning of Incoloy alloy 925 using abrasive water jet technology, Int. J. Adv. Manuf. Technol., 82, 2016, pp. 1747-1752, (2016)
[5]  
Lissek F., Kaufeld M., Tegas J., Hloch S., Online -monitoring for abrasive waterjet cutting of CFRP via acoustic emission: Evaluation of machining parameters and work piece quality due to burst analysis, Procedia Engineering, pp. 67-76, (2016)
[6]  
Hashish M., South A., Optimization Factors in Abrasive - Waterjet Machining, J. Eng. Ind., 1, (1991)
[7]  
Wang J., Guo D.M., A predictive depth of penetration model for abrasive waterjet cutting of polymer matrix composites, J. of Mat. Proc. Tech., 121, 2-3, pp. 390-394, (2002)
[8]  
Hreha P., Radvanska A., Hloch S., Perzel V., Krolczyk G., Monkova K., Determination of vibration frequency depending on abrasive mass flow rate during abrasive water jet cutting, Int. J. Adv. Manuf. Technol., 77, pp. 763-774, (2015)
[9]  
Kumar R., Chattopadhyaya S., Dixit A.R., Bora B., Zelenak M., Foldyna J., Hloch S., Hlavacek P., Scucka J., Klich J., Sitek L., Vilaca P., Surface integrity analysis of abrasive water jet -cut surfaces of friction stir welded joints, Int. J. Adv. Manuf. Technol., (2017)
[10]  
Srivastava M., Tripathi R., Hloch S., Chattopadhyaya S., Dixit A.R., Potential of using water jet peening as a surface treatment process for welded joints, Procedia Engineering, pp. 472-480, (2016)