A New Three-Parameter Flexible Unit Distribution and Its Quantile Regression Model

被引:5
作者
Muhammad, Mustapha [1 ]
Abba, Badamasi [2 ]
Xiao, Jinsen [1 ]
Alsadat, Najwan [3 ]
Jamal, Farrukh [4 ]
Elgarhy, Mohammed [5 ]
机构
[1] Guangdong Univ Petrochem Technol, Dept Math, Maoming 525000, Peoples R China
[2] Cent South Univ, Sch Math & Stat, Changsha 410083, Peoples R China
[3] King Saud Univ, Coll Business Adm, Dept Quantitat Anal, Riyadh 11587, Saudi Arabia
[4] Islamia Univ Bahawalpur, Dept Stat, Bahawalpur 63100, Punjab, Pakistan
[5] Beni Suef Univ, Fac Sci, Math & Comp Sci Dept, Bani Suwayf 62521, Egypt
关键词
Data models; Biological system modeling; Analytical models; Predictive models; Reliability; Maximum likelihood estimation; Hazards; Maintenance; Convolution; Bayes methods; Unit-Weibull; moments; entropy; quantile regression; residual analysis; maximum likelihood; Bayes estimation; simulation; VIABLE CD34(+) CELLS; BETA REGRESSION; TIME;
D O I
10.1109/ACCESS.2024.3485219
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a novel Poisson-unit-Weibull (PUW) distribution, which is defined on a unit domain and characterized by three parameters. The PUW distribution is capable of accommodating diverse non-monotone failure rates. The paper explores several significant statistical properties of the model, including the explicit closed-form expressions for the r(th) moments, quantile function, and Shannon entropy. The parameters of the PUW distribution are estimated using maximum likelihood estimation (MLE) and Bayes estimation with a square error loss function. The performance of these estimation methods is evaluated through Monte Carlo simulation studies. Furthermore, the paper discusses the practical aspects of the PUW-quantile regression model and its MLE, employing residual analysis in simulation studies. The flexibility of the PUW and PUW-quantile regression model is demonstrated through six real-life applications, showcasing their superior performance when compared to other popularly used models.
引用
收藏
页码:156235 / 156251
页数:17
相关论文
共 97 条
[1]   A robust bathtub-shaped failure time model for a two-component system with applications to complete and censored reliability data [J].
Abba, Badamasi ;
Wang, Hong ;
Muhammad, Mustapha ;
Bakouch, Hassan S. .
QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT, 2024, 21 (03) :309-339
[2]   Poisson modified weibull distribution with inferences on stress-strength reliability model [J].
Abd El-Monsef, Mohamed Mohamed Ezzat ;
Marei, Ghareeb Adel ;
Kilany, Neveen Mohamed .
QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2022, 38 (05) :2649-2669
[3]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[4]  
Akaike H., 1992, Selected papers of Hirotugu Akaike, P610, DOI [10.1007/978-1-4612-0919-5_38, DOI 10.1007/978-1-4612-1694-0_15, DOI 10.1007/978-1-4612-1694-015]
[5]   A new uniform distribution with bathtub-shaped failure rate with simulation and application [J].
Al Abbasi, Jamal N. ;
Khaleel, Mundher A. ;
Abdal-hammed, Moudher Kh ;
Loh, Yue Fang ;
Ozel, Gamze .
MATHEMATICAL SCIENCES, 2019, 13 (02) :105-114
[6]   A New Flexible Four Parameter Bathtub Curve Failure Rate Model, and Its Application to Right-Censored Data [J].
Al-Essa, Laila A. ;
Muhammad, Mustapha ;
Tahir, M. H. ;
Abba, Badamasi ;
Xiao, Jinsen ;
Jamal, Farrukh .
IEEE ACCESS, 2023, 11 :50130-50144
[7]   Number of viable CD34+ cells reinfused predicts engraftment in autologous hematopoietic stem cell transplantation [J].
Allan, DS ;
Keeney, M ;
Howson-Jan, K ;
Popma, J ;
Weir, K ;
Bhatia, M ;
Sutherland, DR ;
Chin-Yee, IH .
BONE MARROW TRANSPLANTATION, 2002, 29 (12) :967-972
[8]  
Allen M.P., 2004, Understanding regression analysis
[9]   The bilinear mean residual quantile function [J].
Aswin, I. C. ;
Sankaran, P. G. ;
Sunoj, S. M. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (19) :7115-7129
[10]  
Atkinson A. C., 1985, J. Amer. Stat. Assoc, V82, P689