Electronic structures and optical properties of (L12, D022)-TiAl3 and L12-Ti (Al, Pt)3 by first-principles calculation

被引:0
|
作者
Duan, Yong-Hua [1 ,2 ]
Sun, Yong [1 ]
Lu, Li [3 ]
机构
[1] School of Material Science and Technology, Kunming University of Science and Technology
[2] Key Lab of Advanced Materials of Yunnan Province, Kunming University of Science and Technology
[3] Yunnan Aluminum Co., Ltd.
来源
Gongneng Cailiao/Journal of Functional Materials | 2013年 / 44卷 / 24期
关键词
Electronic structures; First-principles; L1[!sub]2[!/sub]-Ti; (Al; Pt)[!sub]3[!/sub; Optical properties;
D O I
10.3969/j.issn.1001-9731.2013.24.016
中图分类号
学科分类号
摘要
Based on the first-principles density functional theory (DFT), the electronic structures and optical properties of cubic L12-TiAl3 and L12-Ti (Al, Pt)3 and tetragonal D022-TiAl3 are calculated by using the generalized gradient approximation (GGA) and plane wave pseudopotential method. The calculation results show that the valence and conduction bands of L12-TiAl3 and D022-TiAl3 near the Fermi energy of are composed of Ti 3d and Al 3p orbits while Ti 3d and Pt 6s orbits for L12-Ti(Al, Pt)3; the dielectric functions, refractive indexes, absorption coefficients and reflectivity of L12-TiAl3, L12-Ti (Al, Pt)3 and D022-TiAl3 are calculated, respectively.
引用
收藏
页码:3591 / 3597
页数:6
相关论文
共 25 条
  • [1] Grytsiv A., Rogl P., Schmidt H., Et al., Formation and crystal chemistry of cubic ternary phases with filled Th<sub>6</sub>Mn<sub>23</sub>-type and AuCu<sub>3</sub>-type in the systems Ti-M<sup>VIII</sup>-Al, Intermetallics, 12, 5, pp. 563-577, (2004)
  • [2] Zhou H.B., Zhang Y., Liu Y.L., Et al., First-principles characterization of the anisotropy of theoretical strength and the stress-strain relation for a TiAl intermetallic compound, J Phys: Condens Matter, 21, 17, (2009)
  • [3] Chen C.L., Lu W., He L.L., Et al., First-principles study of deformation-induced phase transformations in Ti-Al intermetallics, J Mater Res, 24, 5, pp. 1662-1666, (2009)
  • [4] Carlsson A.E., Meschter P.J., Relative stabilities of Ll<sub>2</sub> and D0<sub>22</sub> structures in ternary MAl<sub>3</sub>-base aluminides, J Mater Res, 5, 12, pp. 2813-2818, (1990)
  • [5] Carlsson A.E., Meschter P.J., Relative stability of L1<sub>2</sub>, D0<sub>22</sub>, and D0<sub>23</sub> structures in MAl<sub>3</sub> compounds, J Mater Res, 4, 5, pp. 1060-1063, (1989)
  • [6] Nakayama Y., Mabuchi H., Formation of ternary L1<sub>2</sub> compounds in Al<sub>3</sub>Ti-base alloys, Intermetallics, 1, 1, pp. 41-48, (1993)
  • [7] Ghosh G., van de Walle A., Asta M., First-principles phase stability calculations of pseudobinary alloys of (Al, Zn)<sub>3</sub>Ti with L1<sub>2</sub>, D0<sub>22</sub>, and D0<sub>23</sub> structures, J Phase Equilib Diff, 28, 1, pp. 9-22, (2007)
  • [8] Delsante S., Ghosh G., Borzone G., A calorimetric study of alloys along the Ti(Zn, Al)<sub>3</sub> section, Calphad, 33, 1, pp. 50-54, (2009)
  • [9] Chen Z.L., Zou H.M., Yu F.M., Et al., Chemical bonding and pseudogap formation in D0<sub>22</sub> and L1<sub>2</sub>-structure (V, Ti)Al<sub>3</sub>, J Phys Chem Solids, 71, pp. 946-951, (2010)
  • [10] Gupta A., Gupta R.S., Electronic and optical properties of AuAl<sub>2</sub> and PtAl<sub>2</sub>, Phys Stat Sol (B), 168, 2, pp. 455-465, (1991)