Capturing the intrinsic dry reforming of methane reaction in a catalytic dual-phase ceramic-carbonate hollow fibre membrane reactor through simulation modelling and process optimisation

被引:0
作者
Terry, Liza Melia [1 ]
Yeo, Jason Yi Juang [1 ]
Wee, Melvin Xin Jie [1 ]
Li, Claudia [2 ]
Song, Guoqiang [3 ]
Song, Jian [4 ]
Halim, M. Hanif B. M. [5 ]
Kadirkhan, Farahdila B. [5 ]
Meng, Xiuxia [4 ]
Liu, Shaomin [6 ]
Kawi, Sibudjing [2 ]
Sunarso, Jaka [1 ]
机构
[1] Swinburne Univ Technol, Fac Engn Comp & Sci, Res Ctr Sustainable Technol, Kuching 93350, Sarawak, Malaysia
[2] Natl Univ Singapore, Dept Chem & Biomol Engn, 4 Engn Dr 4, Singapore 117585, Singapore
[3] YuZhang Normal Univ, Inst Carbon Neutral New Energy, Nanchang 330031, Peoples R China
[4] Shandong Univ Technol, Dept Chem Engn, Zibo 255049, Peoples R China
[5] PETRONAS Res Sdn Bhd, Grp Technol Commercialisat GTC, Project Delivery & Technol PD &T, Carbon Capture Utilisat & Storage CCUS,Kawasan Ins, Block E,Lot 3288 & 3289, Kajang 43000, Selangor, Malaysia
[6] Great Bay Univ, Sch Engn, Dongguan 523000, Peoples R China
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
Carbon capture; Hydrogen; MATLAB; Methane reforming; Response surface methodology; SYNGAS PRODUCTION; TEMPERATURE; SEPARATION; OXIDE; GAS;
D O I
10.1016/j.ijhydene.2024.10.082
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, the permeation flux equations, Richardson and Paripatyadar kinetic model, and lumen-shell mass balances were combined to develop a simulation model for the integrated CO2 separation-dry reforming of methane (DRM) reaction in La0.6Sr0.4Co0.8Fe0.2O3-delta (LSCF)-carbonate hollow fibre membrane reactor. The interactions of the reactants for the DRM and reverse water gas shift reactions were simulated at different operating parameters. Greater membrane area gave higher CO2 and CH4 conversions and H-2/CO (syngas) molar ratio of similar to 1. Lower temperature of 700 degrees C provided higher DRM performance in membrane reactor, which was due to the higher CO2 permeation from the higher electronic conductivity of LSCF. Higher CH4 amount in the sweep gas facilitated CO2 permeation, conversion, syngas yield, and ratio. The optimum DRM performance of the membrane reactor was achieved at a lumen-to-shell flow rate ratio of 0.5, whereas the limiting factor was the CH4 availability at the shell side.
引用
收藏
页码:703 / 717
页数:15
相关论文
共 39 条
[1]   Separation of CO2 from flue gas:: A review [J].
Aaron, D ;
Tsouris, C .
SEPARATION SCIENCE AND TECHNOLOGY, 2005, 40 (1-3) :321-348
[2]  
Afzal S., 2021, Sci World J, V2021
[3]   Carbon dioxide separation and dry reforming of methane for synthesis of syngas by a dual-phase membrane reactor [J].
Anderson, Matthew ;
Lin, Y. S. .
AICHE JOURNAL, 2013, 59 (06) :2207-2218
[4]   Carbonate-ceramic dual-phase membrane for carbon dioxide separation [J].
Anderson, Matthew ;
Lin, Y. S. .
JOURNAL OF MEMBRANE SCIENCE, 2010, 357 (1-2) :122-129
[5]   Mixed Ionic-Electronic Conducting Membranes (MIEC) for Their Application in Membrane Reactors: A Review [J].
Arratibel Plazaola, Alba ;
Cruellas Labella, Aitor ;
Liu, Yuliang ;
Badiola Porras, Nerea ;
Pacheco Tanaka, David Alfredo ;
Van Sint Annaland, Martin ;
Gallucci, Fausto .
PROCESSES, 2019, 7 (03)
[6]   Modelling and optimization of syngas production from methane dry reforming over ceria-supported cobalt catalyst using artificial neural networks and Box-Behnken design [J].
Ayodele, Bamidele V. ;
Cheng, Chin Kui .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2015, 32 :246-258
[7]  
Carvalho SGM, 2022, J Membr Sci, P648
[8]   Double-layer ceramic-carbonate hollow fiber membrane with superior mechanical strength for CO2 separation [J].
Chen, Tianjia ;
Xu, Yanyang ;
Zhang, Yinmin ;
Gong, Yanbing ;
Zhang, Yongfeng ;
Lin, Jerry Y. S. .
JOURNAL OF MEMBRANE SCIENCE, 2022, 658
[9]   High CO2 permeability of ceramic-carbonate dual-phase hollow fiber membrane at medium-high temperature [J].
Chen, Tianjia ;
Wang, Zhigang ;
Hu, Jiawei ;
Wai, Ming Hui ;
Kawi, Sibudjing ;
Lin, Y. S. .
JOURNAL OF MEMBRANE SCIENCE, 2020, 597
[10]   Pd based membrane reactor for ultra pure hydrogen production through the dry reforming of methane. Experimental and modeling studies [J].
Coronel, L. ;
Munera, J. F. ;
Lombardo, E. A. ;
Cornaglia, L. M. .
APPLIED CATALYSIS A-GENERAL, 2011, 400 (1-2) :185-194