Simulation of laser-induced plasma temperature based on machine learning

被引:1
作者
Wang, Ying [1 ]
Gao, Heyan [1 ]
Ye, Jifei [1 ]
Chen, Anmin [2 ]
Wang, Diankai [1 ]
Li, Sai [1 ]
Cui, Qianqian [1 ]
机构
[1] Space Engn Univ, State Key Lab Laser Prop & Applicat, Beijing 101416, Peoples R China
[2] Jilin Univ, Inst Atom & Mol Phys, Changchun, Peoples R China
基金
中国国家自然科学基金;
关键词
INDUCED BREAKDOWN SPECTROSCOPY; LIBS; ACCURACY;
D O I
10.1063/5.0225293
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Laser-induced breakdown spectroscopy (LIBS), a rapid and nondestructive elemental analysis method, is widely applied across various fields. This technique is used for elemental analysis of materials by analyzing the light emitted from laser-induced plasma, with plasma temperature being a crucial parameter. This study focused on obtaining time-resolved spectra of Cu samples at different distances from the lens to the sample using LIBS in conjunction with the following machine-learning algorithms to simulate plasma temperature: decision trees, support vector machine, Gaussian process regression, and neural network. The study compared the accuracy of these four algorithms before and after normalization based on the Cu (I) spectral line at 510.55 nm. All four algorithms achieved a correlation coefficient greater than 0.95 after normalization. The Gaussian process regression model provided excellent predictions before and after normalization with a correlation coefficient of 0.99, demonstrating the advantages of this model in plasma temperature simulation. This study confirmed that machine learning can effectively, conveniently, and accurately predict laser-induced plasma temperature, providing significant utility in LIBS research. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
引用
收藏
页数:10
相关论文
共 39 条
[1]   Sorting zamak alloys via chemometric analysis of their LIBS spectra [J].
Aberkane, S. Messaoud ;
Abdelhamid, M. ;
Mokdad, F. ;
Yahiaoui, K. ;
Abdelli-Messaci, S. ;
Harith, M. A. .
ANALYTICAL METHODS, 2017, 9 (24) :3696-3703
[2]   The Effect of Preprocessing Techniques, Applied to Numeric Features, on Classification Algorithms' Performance [J].
Alshdaifat, Esra'a ;
Alshdaifat, Doa'a ;
Alsarhan, Ayoub ;
Hussein, Fairouz ;
El-Salhi, Subhieh Moh'd Faraj S. .
DATA, 2021, 6 (02) :1-23
[3]   A critical review of recent trends in sample classification using Laser-Induced Breakdown Spectroscopy (LIBS) [J].
Brunnbauer, L. ;
Gajarska, Z. ;
Lohninger, H. ;
Limbeck, A. .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2023, 159
[4]  
Cabello-Solorzano K., The Impact of Data Normalization on the Accuracy of Machine Learning Algorithms: A Comparative Analysis, P344
[5]   Temporally and spatially resolved study of laser-induced plasma generated on coals with different volatile matter contents [J].
Cai, Junbin ;
Dong, Meirong ;
Zhang, Yongsheng ;
Chen, Yixiang ;
Liang, Youcai ;
Lu, Jidong .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2021, 180
[6]   Comparison of plasma temperature and electron density on nanosecond laser ablation of Cu and nano-Cu [J].
Chen, Anmin ;
Jiang, Yuanfei ;
Wang, Tingfeng ;
Shao, Junfeng ;
Jin, Mingxing .
PHYSICS OF PLASMAS, 2015, 22 (03)
[7]   High accuracy analysis of fiber-optic laser-induced breakdown spectroscopy by using multivariate regression analytical methods [J].
Chen, Feng ;
Lu, Wanjie ;
Chu, Yanwu ;
Zhang, Deng ;
Guo, Cong ;
Zhao, Zhifang ;
Zeng, Qingdong ;
Li, Jiaming ;
Guo, Lianbo .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2021, 180
[8]   Sensitivity, precision, and accuracy of fs-LIBS for heavy metal detection in flowing aqueous solutions [J].
Chen, Yutong ;
Jiang, Yuanfei ;
Han, Jianhui ;
Chen, Anmin ;
Jin, Mingxing .
OPTICS LETTERS, 2024, 49 (11) :3106-3109
[9]   A Simple Device for Lens-to-Sample Distance Adjustment in Laser-Induced Breakdown Spectroscopy (LIBS) [J].
Cortez, Juliana ;
Farias Filho, Benedito B. ;
Fontes, Laiane M. ;
Pasquini, Celio ;
Raimundo, Ivo M., Jr. ;
Pimentel, Maria Fernanda ;
Lins Borba, Flavia de Souza .
APPLIED SPECTROSCOPY, 2017, 71 (04) :634-639
[10]   Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy: Beyond the McWhirter criterion [J].
Cristoforetti, G. ;
De Giacomo, A. ;
Dell'Aglio, M. ;
Legnaioli, S. ;
Tognoni, E. ;
Palleschi, V. ;
Omenetto, N. .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2010, 65 (01) :86-95