Plasma power-to-X (PP2X): status and opportunities for non-thermal plasma technologies

被引:1
作者
Sun, Jing [1 ]
Qu, Zhongping [1 ]
Gao, Yuting [1 ]
Li, Tianyu [1 ]
Hong, Jungmi [2 ]
Zhang, Tianqi [2 ]
Zhou, Rusen [1 ,2 ]
Liu, Dingxin [1 ]
Tu, Xin [3 ]
Chen, Guoxing [4 ]
Brueser, Volker [5 ]
Weltmann, Klaus-Dieter [5 ]
Mei, Danhua [6 ]
Fang, Zhi [6 ]
Borras, Ana [7 ]
Barranco, Angel [7 ]
Xu, Shaojun [8 ]
Ma, Chuanlong [9 ]
Dou, Liguang [10 ]
Zhang, Shuai [10 ]
Shao, Tao [10 ]
Chen, Guangliang [11 ]
Liu, Dawei [12 ]
Lu, Xinpei [12 ]
Bo, Zheng [13 ]
Chiang, Wei-Hung [14 ]
Vasilev, Krasimir [15 ]
Keidar, Michael [16 ]
Nikiforov, Anton [17 ]
Jalili, Ali Rouhollah [25 ]
Cullen, Patrick J. [2 ,18 ]
Dai, Liming [19 ]
Hessel, Volker [20 ]
Bogaerts, Annemie [21 ]
Murphy, Anthony B. [22 ]
Zhou, Renwu [1 ]
Ostrikov, Kostya [23 ,24 ]
机构
[1] Xi An Jiao Tong Univ, Ctr Plasma Biomed, Sch Elect Engn, State Key Lab Elect Insulat & Power Equipment, Xian, Shaanxi, Peoples R China
[2] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia
[3] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3GJ, England
[4] Fraunhofer Res Inst Mat Recycling & Resource Strat, Brentanostr 2a, D-63755 Alzenau, Germany
[5] INP Greifswald eV, Leibniz Inst Plasma Sci & Technol, D-17489 Greifswald, Germany
[6] Nanjing Tech Univ, Coll Elect Engn & Control Sci, Nanjing 211816, Jiangsu, Peoples R China
[7] CSIC US, Mat Sci Inst Seville, Nanotechnol Surfaces & Plasma Lab, C-Americo Vespucio 49, Seville 41092, Spain
[8] Hefei Univ Technol, Sch Elect & Automat Engn, Hefei 230009, Peoples R China
[9] McGill Univ, Dept Chem Engn, Catalyt & Plasma Proc Engn, Montreal, PQ H3A 0C5, Canada
[10] Chinese Acad Sci, Inst Elect Engn, Beijing Int S&T Cooperat Base Plasma Sci & Energy, Beijing 100190, Peoples R China
[11] Huzhou Univ, Dept Mat Engn, Huzhou 313000, Peoples R China
[12] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, State Key Lab Adv Electromagnet Engn & Technol, Wuhan, Hubei, Peoples R China
[13] Zhejiang Univ, Coll Energy Engn, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Zhejiang, Peoples R China
[14] Natl Taiwan Univ Sci & Technol, Taipei 10607, Taiwan
[15] Flinders Univ S Australia, Coll Med & Publ Hlth, Bedford Pk, SA 5042, Australia
[16] George Washington Univ, Dept Mech & Aerosp Engn, Washington, DC 20052 USA
[17] Univ Ghent, Dept Appl Phys, Res Unit Plasma Technol RUPT, Sint Pietersnieuwstr 41,B4, B-9000 Ghent, Belgium
[18] PlasmaLeap Technol, Marrickville, NSW 2204, Australia
[19] Univ New South Wales UNSW, Sch Chem Engn, Sydney, NSW 2052, Australia
[20] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia
[21] Univ Antwerp, Dept Chem, Res Grp PLASMANT, Univ Pl 1, B-2610 Antwerp, Belgium
[22] CSIRO Mfg, Lindfield, NSW 2070, Australia
[23] Queensland Univ Technol QUT, Sch Chem & Phys, Brisbane, Qld 4000, Australia
[24] Queensland Univ Technol QUT, Ctr Mat Sci, Brisbane, Qld 4000, Australia
[25] Univ New South Wales UNSW, Sydney, 2052, Australia
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
plasma power-to-X; non-thermal plasma; gas conversion; plasma catalysis; renewable energy; DIELECTRIC-BARRIER-DISCHARGE; GLIDING ARC PLASMA; ASSISTED CATALYTIC CONVERSION; ATMOSPHERIC-PRESSURE PLASMA; NANOSECOND PULSED PLASMA; GAS SHIFT REACTION; CARBON-DIOXIDE; NITROGEN-FIXATION; AMMONIA-SYNTHESIS; CO2; HYDROGENATION;
D O I
10.1088/1361-6463/ad7bc4
中图分类号
O59 [应用物理学];
学科分类号
摘要
This article discusses the 'power-to-X' (P2X) concept, highlighting the integral role of non-thermal plasma (NTP) in P2X for the eco-friendly production of chemicals and valuable fuels. NTP with unique thermally non-equilibrium characteristics, enables exotic reactions to occur under ambient conditions. This review summarizes the plasma-based P2X systems, including plasma discharges, reactor configurations, catalytic or non-catalytic processes, and modeling techniques. Especially, the potential of NTP to directly convert stable molecules including CO2, CH4 and air/N2 is critically examined. Additionally, we further present and discuss hybrid technologies that integrate NTP with photocatalysis, electrocatalysis, and biocatalysis, broadening its applications in P2X. It concludes by identifying key challenges, such as high energy consumption, and calls for the outlook in plasma catalysis and complex reaction systems to generate valuable products efficiently and sustainably, and achieve the industrial viability of the proposed plasma P2X strategy.
引用
收藏
页数:35
相关论文
共 265 条
  • [1] Temperature-dependent behavior of nitrogen fixation in nanopulsed dielectric barrier discharge operated at different humidity levels and oxygen contents
    Abdelaziz, Ayman A.
    Kim, Hyun-Ha
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (11)
  • [2] The 2022 Plasma Roadmap: low temperature plasma science and technology
    Adamovich, I
    Agarwal, S.
    Ahedo, E.
    Alves, L. L.
    Baalrud, S.
    Babaeva, N.
    Bogaerts, A.
    Bourdon, A.
    Bruggeman, P. J.
    Canal, C.
    Choi, E. H.
    Coulombe, S.
    Donko, Z.
    Graves, D. B.
    Hamaguchi, S.
    Hegemann, D.
    Hori, M.
    Kim, H-H
    Kroesen, G. M. W.
    Kushner, M. J.
    Laricchiuta, A.
    Li, X.
    Magin, T. E.
    Thagard, S. Mededovic
    Miller, V
    Murphy, A. B.
    Oehrlein, G. S.
    Puac, N.
    Sankaran, R. M.
    Samukawa, S.
    Shiratani, M.
    Simek, M.
    Tarasenko, N.
    Terashima, K.
    Thomas, E., Jr.
    Trieschmann, J.
    Tsikata, S.
    Turner, M. M.
    van der Walt, I. J.
    van de Sanden, M. C. M.
    von Woedtke, T.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (37)
  • [3] Carbon Dioxide Splitting in a Dielectric Barrier Discharge Plasma: A Combined Experimental and Computational Study
    Aerts, Robby
    Somers, Wesley
    Bogaerts, Annemie
    [J]. CHEMSUSCHEM, 2015, 8 (04) : 702 - 716
  • [4] Conversion of methane to methanol in an ac dielectric barrier discharge
    Aghamir, FM
    Matin, NS
    Jalili, AH
    Esfarayeni, MH
    Khodagholi, MA
    Ahmadi, R
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2004, 13 (04) : 707 - 711
  • [5] Low-Temperature CO2 Methanation: Synergistic Effects in Plasma-Ni Hybrid Catalytic System
    Ahmad, Farhan
    Lovell, Emma C.
    Masood, Hassan
    Cullen, Patrick J.
    Ostrikov, Kostya Ken
    Scott, Jason A.
    Amal, Rose
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (04) : 1888 - 1898
  • [6] Towards the electrochemical conversion of carbon dioxide into methanol
    Albo, J.
    Alvarez-Guerra, M.
    Castano, P.
    Irabien, A.
    [J]. GREEN CHEMISTRY, 2015, 17 (04) : 2304 - 2324
  • [7] Environmental impact assessment of plasma-assisted and conventional ammonia synthesis routes
    Anastasopoulou, Aikaterini
    Keijzer, Robin
    Patil, Bhaskar
    Lang, Juergen
    Rooij, Gerard
    Hessel, Volker
    [J]. JOURNAL OF INDUSTRIAL ECOLOGY, 2020, 24 (05) : 1171 - 1185
  • [8] A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements
    Andersen, Suzanne Z.
    Colic, Viktor
    Yang, Sungeun
    Schwalbe, Jay A.
    Nielander, Adam C.
    McEnaney, Joshua M.
    Enemark-Rasmussen, Kasper
    Baker, Jon G.
    Singh, Aayush R.
    Rohr, Brian A.
    Statt, Michael J.
    Blair, Sarah J.
    Mezzavilla, Stefano
    Kibsgaard, Jakob
    Vesborg, Peter C. K.
    Cargnello, Matteo
    Bent, Stacey F.
    Jaramillo, Thomas F.
    Stephens, Ifan E. L.
    Norskov, Jens K.
    Chorkendorff, Ib
    [J]. NATURE, 2019, 570 (7762) : 504 - +
  • [9] O2(1Δ) production in flowing He/O2 plasmas.: II.: Two-dimensional modeling -: art. no. 073304
    Arakoni, R
    Stafford, DS
    Babaeva, NY
    Kushner, MJ
    [J]. JOURNAL OF APPLIED PHYSICS, 2005, 98 (07)
  • [10] Non-thermal plasma technology for the conversion of CO2
    Ashford, Bryony
    Tu, Xin
    [J]. CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2017, 3 : 45 - 49