Self-Propagating High-Temperature Synthesis of ZrB2−Al2O3 Composite Powders: The Roles of Raw Material Ratios

被引:0
作者
Xiao G.Q. [1 ]
Zhang W. [1 ]
Ding D.H. [2 ]
Ren Y. [1 ]
Li Q. [1 ]
Yang P. [1 ]
机构
[1] College of Materials and Mineral Resources, Xi’an University of Architecture and Technology, Xi’an
来源
Ding, D.H. (dingdongxauat@163.com) | 1600年 / Springer Vieweg卷 / 65期
基金
中国国家自然科学基金;
关键词
self-propagating high-temperature synthesis; X-ray diffraction; ZrB[!sub]2[!/sub]−Al[!sub]2[!/sub]O[!sub]3[!/sub] powders;
D O I
10.1007/BF03401185
中图分类号
学科分类号
摘要
ZrB2−Al2O3 composite powders were prepared by self-propagating high-temperature synthesis (SHS) using different raw material ratios. The phase constituents and microstructure of the final product were exam-ined by X-ray Diffraction (XRD) and Field-Emission Scanning Electron Mi-croscopy (FESEM) with Energy Dispersive Spectrometry (EDS). The results showed that ZrB2 and Al2O3 are only contained in the final product and the content of ZrB2 is the highest when the raw material mole ratio of ZrO2: B2O3: Al is 3: 3: 11.5. Unreacted ZrO2 remains in products prepared using raw materials with stoichiometric ratio and with excessive B2O3. The ZrB2 content decreases and then increases with increasing B2O3, while crystal grain diameter (D) and distance of crystal face (d) behaves in the opposite manner. A eutectic structure was formed in the local region of product prepared with a stoichiometric ratio. © 2016 Expert Fachmedien GmbH // D-40223 Düsseldorf, Germany.
引用
收藏
页码:35 / 40
页数:5
相关论文
共 24 条
  • [1] Mishra S.K., Das S.K., Pathak V.S., Effect of titanium diluent on the fabrication of Al<sub>2</sub>O<sub>3</sub>-ZrB<sub>2</sub> composite by SHS dynamic compaction, Comp. Sci. Technol., 67, (2007)
  • [2] Jung S.H., Oh H.C., Kim J.H., Choi S.C., Lee S.H., Kim H.D., Pretreatment of zirconium diboride powder to improve densification, J. Alloys Compd., 548, (2013)
  • [3] Khanra A.K., Reaction chemistry during self-propagating high-temperature synthesis (SHS) of H<sub>3</sub> BO<sub>3</sub>-ZrO<sub>2</sub>-Mg system, Mater. Res. Bull., 42, (2007)
  • [4] Mashra S.K., Das S.K., Sherbacov V., Fabrication of Al<sub>2</sub>O<sub>3</sub>-ZrB<sub>2</sub> in situ composite by SHS dynamic compaction: A novel approach, Comp. Sci. and Technol., 67, (2007)
  • [5] Jamal Abbasi B., Zakeri M., Tayebifard S.A., Mechanochemical synthesis of Al<sub>2</sub>O<sub>3</sub>-ZrB<sub>2</sub>-ZrO<sub>2</sub> nanocomposite powder, Mater. Res. Bull., 49, (2014)
  • [6] Sayagues M.J., Aviles M.A., Cordoba J.M., Gotor F.J., Self-propagating combustion synthesis via an MSR process: An efficient and simple method to prepare (Ti, Zr, Hf)B<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> powder nanocomposite), Powder Techn, 256, pp. 244-250, (2014)
  • [7] Mishra S.K., Bhople A., Paswan S., Microstructure, hardness, toughness and oxidation resistance of Al<sub>2</sub>O<sub>3</sub>-ZrB<sub>2</sub> composite with different Ti percentages prepared by in-situ SHS dynamic compaction, J. Refractory Met. and Hard Mater., 43, (2014)
  • [8] Li L., Hong Y.R., Sun J.L., He Z.Y., Peng X.Y., Formation of ZrB<sub>2</sub> in MgO-C Composite Materials Using In-situ Synthesis Method, J. Iron Steel Res. Int, 13, 1, (2006)
  • [9] Postrach S., Potschke J., Pressureless sintering of Al<sub>2</sub>O<sub>3</sub> containing up to 20 vol-% zirconium diboride (ZrB2), J. Eur. Ceram. Soc., 20, (2000)
  • [10] Feng C.F., Froyen L., In-situ P/M Al/(ZrB<sub>2</sub> +Al<sub>2</sub>O<sub>3</sub>) MMCs: Processing, microstructure and mechanical characterization, Acta Mater, 47, (1999)