Quantum illumination using polarization-entangled photon pairs for enhanced object detection

被引:0
作者
Sengupta, Kanad [1 ]
Shafi, K. Muhammed [1 ]
Asokan, Soumya [1 ]
Chandrashekar, C. M. [1 ,2 ,3 ]
机构
[1] Indian Inst Sci, Dept Instrumentat & Appl Phys, Quantum Opt & Quantum Informat, Bengaluru 560012, India
[2] Inst Math Sci, CIT Campus, Chennai 600113, India
[3] Homi Bhabha Natl Inst, Training Sch Complex, Mumbai 400094, India
关键词
Quantum noise - Quantum optics;
D O I
10.1364/OE.531674
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Entangled light sources for illuminating objects offer advantages over conventional illumination methods by enhancing the detection sensitivity of reflecting objects. The core of the quantum advantage lies in effectively exploiting quantum correlations to isolate noise and detect objects with low reflectivity. This work experimentally demonstrates the benefits of using polarization-entangled photon pairs for quantum illumination and shows that the quantum correlation measure, using CHSH value and normalized CHSH value, is robust against losses, noise, and depolarization. We report the detection of objects with reflectivity (eta) as low as 0.05 and an object submerged in noise with a signal-to-noise ratio of 0.003 using quantum correlation and residual quantum correlation measures, surpassing previous results. Additionally, we demonstrate that the normalized CHSH value aids in estimating the reflectivity of the detected object. Furthermore, we analyze the robustness of the correlation measure under photon attenuation in atmospheric conditions to show the practical feasibility of real-time applications. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:40150 / 40164
页数:15
相关论文
共 56 条
[21]   NEW HIGH-INTENSITY SOURCE OF POLARIZATION-ENTANGLED PHOTON PAIRS [J].
KWIAT, PG ;
MATTLE, K ;
WEINFURTER, H ;
ZEILINGER, A ;
SERGIENKO, AV ;
SHIH, YH .
PHYSICAL REVIEW LETTERS, 1995, 75 (24) :4337-4341
[22]   Quantum illumination reveals phase-shift inducing cloaking [J].
Las Heras, U. ;
Di Candia, R. ;
Fedorov, K. G. ;
Deppe, F. ;
Sanz, M. ;
Solano, E. .
SCIENTIFIC REPORTS, 2017, 7
[23]   Polarization-entangled photon-pair source obtained via type-II non-collinear SPDC process with PPKTP crystal [J].
Lee, Sang Min ;
Kim, Heonoh ;
Cha, Myoungsik ;
Moon, Han Seb .
OPTICS EXPRESS, 2016, 24 (03) :2941-2953
[24]   Enhancing LIDAR performance metrics using continuous-wave photon-pair sources [J].
Liu, Han ;
Giovannini, Daniel ;
He, Haoyu ;
England, Duncan ;
Sussman, Benjamin J. ;
Balaji, Bhashyam ;
Helmy, Amr S. .
OPTICA, 2019, 6 (10) :1349-1355
[25]   Enhanced sensitivity of photodetection via quantum illumination [J].
Lloyd, Seth .
SCIENCE, 2008, 321 (5895) :1463-1465
[26]   A detailed description of the experimental realization of a quantum illumination protocol [J].
Lopaeva, E. D. ;
Berchera, I. Ruo ;
Olivares, S. ;
Brida, G. ;
Degiovanni, I. P. ;
Genovese, M. .
PHYSICA SCRIPTA, 2014, T160
[27]   Experimental Realization of Quantum Illumination [J].
Lopaeva, E. D. ;
Berchera, I. Ruo ;
Degiovanni, I. P. ;
Olivares, S. ;
Brida, G. ;
Genovese, M. .
PHYSICAL REVIEW LETTERS, 2013, 110 (15)
[28]   Receiver Operating Characteristics for a Prototype Quantum Two-Mode Squeezing Radar [J].
Luong, David ;
Chang, C. W. Sandbo ;
Vadiraj, A. M. ;
Damini, Anthony ;
Wilson, Christopher M. ;
Balaji, Bhashyam .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (03) :2041-2060
[29]   Quantum Radar [J].
Maccone, Lorenzo ;
Ren, Changliang .
PHYSICAL REVIEW LETTERS, 2020, 124 (20)
[30]   Photon-number correlation for quantum enhanced imaging and sensing [J].
Meda, A. ;
Losero, E. ;
Samantaray, N. ;
Scafirimuto, F. ;
Pradyumna, S. ;
Avella, A. ;
Ruo-Berchera, I. ;
Genovese, M. .
JOURNAL OF OPTICS, 2017, 19 (09)