Quantum illumination using polarization-entangled photon pairs for enhanced object detection

被引:0
作者
Sengupta, Kanad [1 ]
Shafi, K. Muhammed [1 ]
Asokan, Soumya [1 ]
Chandrashekar, C. M. [1 ,2 ,3 ]
机构
[1] Indian Inst Sci, Dept Instrumentat & Appl Phys, Quantum Opt & Quantum Informat, Bengaluru 560012, India
[2] Inst Math Sci, CIT Campus, Chennai 600113, India
[3] Homi Bhabha Natl Inst, Training Sch Complex, Mumbai 400094, India
关键词
Quantum noise - Quantum optics;
D O I
10.1364/OE.531674
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Entangled light sources for illuminating objects offer advantages over conventional illumination methods by enhancing the detection sensitivity of reflecting objects. The core of the quantum advantage lies in effectively exploiting quantum correlations to isolate noise and detect objects with low reflectivity. This work experimentally demonstrates the benefits of using polarization-entangled photon pairs for quantum illumination and shows that the quantum correlation measure, using CHSH value and normalized CHSH value, is robust against losses, noise, and depolarization. We report the detection of objects with reflectivity (eta) as low as 0.05 and an object submerged in noise with a signal-to-noise ratio of 0.003 using quantum correlation and residual quantum correlation measures, surpassing previous results. Additionally, we demonstrate that the normalized CHSH value aids in estimating the reflectivity of the detected object. Furthermore, we analyze the robustness of the correlation measure under photon attenuation in atmospheric conditions to show the practical feasibility of real-time applications. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:40150 / 40164
页数:15
相关论文
共 56 条
[1]   Entangled photon-pair sources based on three-wave mixing in bulk crystals [J].
Anwar, Ali ;
Perumangatt, Chithrabhanu ;
Steinlechner, Fabian ;
Jennewein, Thomas ;
Ling, Alexander .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (04)
[2]   Microwave Quantum Illumination [J].
Barzanjeh, Shabir ;
Guha, Saikat ;
Weedbrook, Christian ;
Vitali, David ;
Shapiro, Jeffrey H. ;
Pirandola, Stefano .
PHYSICAL REVIEW LETTERS, 2015, 114 (08)
[3]   Progress in satellite quantum key distribution [J].
Bedington, Robert ;
Arrazola, Juan Miguel ;
Ling, Alexander .
NPJ QUANTUM INFORMATION, 2017, 3
[4]   Quantum and non-local effects offer over 40 dB noise resilience advantage towards quantum lidar [J].
Blakey, Phillip S. ;
Liu, Han ;
Papangelakis, Georgios ;
Zhang, Yutian ;
Leger, Zacharie M. ;
Iu, Meng Lon ;
Helmy, Amr S. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[5]   Experimental quantum teleportation [J].
Bouwmeester, D ;
Pan, JW ;
Mattle, K ;
Eibl, M ;
Weinfurter, H ;
Zeilinger, A .
NATURE, 1997, 390 (6660) :575-579
[6]   Quantum-enhanced noise radar [J].
Chang, C. W. Sandbo ;
Vadiraj, A. M. ;
Bourassa, J. ;
Balaji, B. ;
Wilson, C. M. .
APPLIED PHYSICS LETTERS, 2019, 114 (11)
[7]   Efficiency of photonic state tomography affected by fiber attenuation [J].
Czerwinski, Artur ;
Szlachetka, Jakub .
PHYSICAL REVIEW A, 2022, 105 (06)
[8]   Quantum target detection using entangled photons [J].
Devi, A. R. Usha ;
Rajagopal, A. K. .
PHYSICAL REVIEW A, 2009, 79 (06)
[9]   Quantum-enhanced standoff detection using correlated photon pairs [J].
England, Duncan G. ;
Balaji, Bhashyam ;
Sussman, Benjamin J. .
PHYSICAL REVIEW A, 2019, 99 (02)
[10]   Photonic quantum information processing: a review [J].
Flamini, Fulvio ;
Spagnolo, Nicolo ;
Sciarrino, Fabio .
REPORTS ON PROGRESS IN PHYSICS, 2019, 82 (01)