A Multiscale Interactive Attention Short Text Classification Model Based on BERT

被引:0
作者
Zhou, Lu [1 ]
Wang, Peng [1 ]
Zhang, Huijun [1 ]
Wu, Shengbo [2 ]
Zhang, Tao [2 ]
机构
[1] Digital Silk Rd Xinjiang Ind Investment Grp Co, Urumqi 830000, Peoples R China
[2] Xinjiang Univ, Sch Software, Urumqi 83009, Peoples R China
关键词
BERT; RNN; CNN; multiscale interactive attention; pre-training models;
D O I
10.1109/ACCESS.2024.3478781
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Text classification tasks aim to comprehend and classify text content into specific classifications. This task is crucial for interpreting unstructured text, making it a foundational task in the field of Natural Language Processing(NLP). Despite advancements in large language models, lightweight text classification via these models still demands substantial computational resources. Therefore, this paper presents a multiscale interactive attention short text classification model based on BERT, which is designed to address the short text classification problem with limited resources. A corpus containing news articles, Chinese comments, and English sentiment classifications is employed for text classification. The model uses BERT pre-trained word vectors as embedding layers, connects to a multilevel feature extraction network, and further extracts contextual features after feature fusion. The experimental results on the THUCNews, Today's headline news corpus, the SST-2 dataset, and the Touhou 38 W dataset demonstrate that our method outperforms all existing algorithms in the literature.
引用
收藏
页码:160992 / 161001
页数:10
相关论文
共 35 条
[1]  
Adiwardana D, 2020, Arxiv, DOI [arXiv:2001.09977, 10.48550/arXiv.2001.09977]
[2]  
[Anonymous], 2013, P 2013 C EMP METH NA, DOI DOI 10.1371/JOURNAL.PONE.0073791
[3]  
Brown TB, 2020, ADV NEUR IN, V33
[4]  
Chen JD, 2019, AAAI CONF ARTIF INTE, P6252
[5]  
Chen Y., 2015, Convolutional neural network for sentence classification
[6]  
Devlin J, 2019, Arxiv, DOI [arXiv:1810.04805, DOI 10.48550/ARXIV.1810.04805]
[7]   A Fusion Model-Based Label Embedding and Self-Interaction Attention for Text Classification [J].
Dong, Yanru ;
Liu, Peiyu ;
Zhu, Zhenfang ;
Wang, Qicai ;
Zhang, Qiuyue .
IEEE ACCESS, 2020, 8 :30548-30559
[8]  
Guo GD, 2003, LECT NOTES COMPUT SC, V2888, P986
[9]   Pre-trained models: Past, present and future [J].
Han, Xu ;
Zhang, Zhengyan ;
Ding, Ning ;
Gu, Yuxian ;
Liu, Xiao ;
Huo, Yuqi ;
Qiu, Jiezhong ;
Yao, Yuan ;
Zhang, Ao ;
Zhang, Liang ;
Han, Wentao ;
Huang, Minlie ;
Jin, Qin ;
Lan, Yanyan ;
Liu, Yang ;
Liu, Zhiyuan ;
Lu, Zhiwu ;
Qiu, Xipeng ;
Song, Ruihua ;
Tang, Jie ;
Wen, Ji-Rong ;
Yuan, Jinhui ;
Zhao, Wayne Xin ;
Zhu, Jun .
AI OPEN, 2021, 2 :225-250
[10]   Support vector machines [J].
Hearst, MA .
IEEE INTELLIGENT SYSTEMS & THEIR APPLICATIONS, 1998, 13 (04) :18-21