Experiments on free decay of quasi-two-dimensional turbulent flows

被引:24
|
作者
Danilov, S. [1 ]
Dolzhanskii, F.V. [1 ]
Dovzhenko, V.A. [1 ]
Krymov, V.A. [1 ]
机构
[1] Institute of Atmospheric Physics, 3 Pyzhevsky per., 109017 Moscow, Russia
来源
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics | 2002年 / 65卷 / 03期
关键词
Computer simulation - Correlation methods - Drag - Functions - Magnetization - Numerical methods - Reynolds number - Vectors - Velocity measurement - Viscosity - Vortex flow;
D O I
10.1103/PhysRevE.65.036316
中图分类号
学科分类号
摘要
Decaying quasi-two-dimensional turbulence in a thin-layer flow is explored in laboratory experiments. We report the presence of power-law interval in the enstrophy decay law, in agreement with earlier experiments by Cardoso et al. [Phys. Rev. E 49, 454 (1994)] and Hansen et al. [Phys. Rev. E 58, 7261 (1998)]. The decay exponent proves sensitive to the way in which the energy decay is compensated. For the range of initial microscale Reynolds numbers between 35 and 95, the decay exponent is close to - 0.4 for the ratio of enstrophy to energy, and to - 0.75 for the enstrophy multiplied with a compensating factor of exp(- 2λt), where λ is the bottom-drag coefficient and t the decay time. The vorticity behavior does not comply with the theory of Carnevale et al. [Phys. Rev. Lett. 66, 2735 (1991)]: robust vortices are not observed in the vorticity field and the vorticity kurtosis is less than the Gaussian value. © 2002 The American Physical Society.
引用
收藏
页码:1 / 036316
相关论文
共 50 条
  • [21] Quasi-two-dimensional MHD turbulence in three-dimensional flows
    Roberts, DA
    Goldstein, ML
    Deane, AE
    Ghosh, S
    PHYSICAL REVIEW LETTERS, 1999, 82 (03) : 548 - 551
  • [22] Dispersion of passive particles by a quasi-two-dimensional turbulent flow
    Sokolov, IM
    Reigada, R
    PHYSICAL REVIEW E, 1999, 59 (05): : 5412 - 5416
  • [23] Dispersion of passive particles by a quasi-two-dimensional turbulent flow
    Sokolov, I.M.
    Reigada, R.
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59 (5 B): : 5412 - 5416
  • [24] Dispersion in a quasi-two-dimensional turbulent flow: An experimental study
    Cardoso, O
    Gluckmann, B
    Parcollet, O
    Tabeling, P
    PHYSICS OF FLUIDS, 1996, 8 (01) : 209 - 214
  • [25] Decay and renormalization of a longitudinal mode in a quasi-two-dimensional antiferromagnet
    Seung-Hwan Do
    Hao Zhang
    Travis J. Williams
    Tao Hong
    V. Ovidiu Garlea
    J. A. Rodriguez-Rivera
    Tae-Hwan Jang
    Sang-Wook Cheong
    Jae-Hoon Park
    Cristian D. Batista
    Andrew D. Christianson
    Nature Communications, 12
  • [26] Decay and renormalization of a longitudinal mode in a quasi-two-dimensional antiferromagnet
    Do, Seung-Hwan
    Zhang, Hao
    Williams, Travis J.
    Hong, Tao
    Garlea, V. Ovidiu
    Rodriguez-Rivera, J. A.
    Jang, Tae-Hwan
    Cheong, Sang-Wook
    Park, Jae-Hoon
    Batista, Cristian D.
    Christianson, Andrew D.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [27] Traveling shock front in quasi-two-dimensional granular flows
    Hu, Guoqi
    Li, Yinchang
    Hou, Meiying
    To, Kiwing
    PHYSICAL REVIEW E, 2010, 81 (01):
  • [28] Transverse structures of quasi-two-dimensional geophysical and magnetohydrodynamic flows
    Dolzhansky, FV
    IZVESTIYA AKADEMII NAUK FIZIKA ATMOSFERY I OKEANA, 1999, 35 (02): : 163 - 173
  • [29] Subcritical transition to turbulence in quasi-two-dimensional shear flows
    Camobreco, Christopher J.
    Potherat, Alban
    Sheard, Gregory J.
    JOURNAL OF FLUID MECHANICS, 2023, 963
  • [30] Determining the effective viscosity in quasi-two-dimensional geophysical flows
    Gledzer, AE
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2003, 39 (04) : 420 - 431