Experiments on free decay of quasi-two-dimensional turbulent flows

被引:24
|
作者
Danilov, S. [1 ]
Dolzhanskii, F.V. [1 ]
Dovzhenko, V.A. [1 ]
Krymov, V.A. [1 ]
机构
[1] Institute of Atmospheric Physics, 3 Pyzhevsky per., 109017 Moscow, Russia
来源
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics | 2002年 / 65卷 / 03期
关键词
Computer simulation - Correlation methods - Drag - Functions - Magnetization - Numerical methods - Reynolds number - Vectors - Velocity measurement - Viscosity - Vortex flow;
D O I
10.1103/PhysRevE.65.036316
中图分类号
学科分类号
摘要
Decaying quasi-two-dimensional turbulence in a thin-layer flow is explored in laboratory experiments. We report the presence of power-law interval in the enstrophy decay law, in agreement with earlier experiments by Cardoso et al. [Phys. Rev. E 49, 454 (1994)] and Hansen et al. [Phys. Rev. E 58, 7261 (1998)]. The decay exponent proves sensitive to the way in which the energy decay is compensated. For the range of initial microscale Reynolds numbers between 35 and 95, the decay exponent is close to - 0.4 for the ratio of enstrophy to energy, and to - 0.75 for the enstrophy multiplied with a compensating factor of exp(- 2λt), where λ is the bottom-drag coefficient and t the decay time. The vorticity behavior does not comply with the theory of Carnevale et al. [Phys. Rev. Lett. 66, 2735 (1991)]: robust vortices are not observed in the vorticity field and the vorticity kurtosis is less than the Gaussian value. © 2002 The American Physical Society.
引用
收藏
页码:1 / 036316
相关论文
共 50 条
  • [1] Experiments on free decay of quasi-two-dimensional turbulent flows
    Danilov, S
    Dolzhanskii, FV
    Dovzhenko, VA
    Krymov, VA
    PHYSICAL REVIEW E, 2002, 65 (03):
  • [2] Scaling in three-dimensional and quasi-two-dimensional rotating turbulent flows
    Baroud, CN
    Plapp, BB
    Swinney, HL
    She, ZS
    PHYSICS OF FLUIDS, 2003, 15 (08) : 2091 - 2104
  • [3] Experiments and simulations on self-organization of confined quasi-two-dimensional turbulent flows with discontinuous topography
    Tenreiro, M.
    Zavala Sanson, L.
    van Heijst, G. J. F.
    Trieling, R. R.
    PHYSICS OF FLUIDS, 2010, 22 (02) : 1 - 14
  • [4] An experimental investigation of MHD quasi-two-dimensional turbulent shear flows
    Messadek, K
    Moreau, R
    JOURNAL OF FLUID MECHANICS, 2002, 456 : 137 - 159
  • [5] Maslov Rank Distributions for the Analysis of Two-Dimensional and Quasi-Two-Dimensional Turbulent Flows
    Guzev, M. A.
    Fortova, S. V.
    Doludenko, A. N.
    Posudnevskaya, A. O.
    Ermakov, A. D.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2024, 31 (03) : 438 - 449
  • [6] Scaling of Near-Wall Flows in Quasi-Two-Dimensional Turbulent Channels
    Samanta, D.
    Ingremeau, F.
    Cerbus, R.
    Tran, T.
    Goldburg, W. I.
    Chakraborty, P.
    Kellay, H.
    PHYSICAL REVIEW LETTERS, 2014, 113 (02)
  • [7] One-equation model for quasi-two-dimensional turbulent magnetohydrodynamic flows
    Smolentsev, S.
    Moreau, R.
    PHYSICS OF FLUIDS, 2007, 19 (07)
  • [8] Direct numerical simulation of quasi-two-dimensional MHD turbulent shear flows
    Chen, Long
    Potherat, Alban
    Ni, Ming-Jiu
    Moreau, Rene
    JOURNAL OF FLUID MECHANICS, 2021, 915
  • [10] On the decay law of quasi-two-dimensional turbulence
    Kostrykin, S. V.
    Khapaev, A. A.
    Yakushkin, I. G.
    JETP LETTERS, 2012, 95 (10) : 515 - 520