A Hermitian Curvature Flow

被引:0
作者
Jixiang FU
Jieming YANG
机构
[1] SchoolofMathematicalSciences,FudanUniversity
关键词
D O I
暂无
中图分类号
O186.1 [微分几何];
学科分类号
摘要
A Hermitian curvature flow on a compact Calabi-Yau manifold is proposed and a regularity result is obtained. The solution of the flow, if exists, is a balanced HermitianEinstein metric.
引用
收藏
页码:845 / 854
页数:10
相关论文
共 11 条
  • [1] A flow of conformally balanced metrics with Kähler fixed points.[J].Duong H. Phong;Sebastien Picard;Xiangwen Zhang.Mathematische Annalen.2019, 3-4
  • [2] The $\partial \overline{\partial}$-lemma for general Clemens manifolds.[J].Friedman Robert.Pure and Applied Mathematics Quarterly.2019, 4
  • [3] Anomaly flows
    Phong, Duong H.
    Picard, Sebastien
    Zhang, Xiangwen
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2018, 26 (04) : 955 - 1008
  • [4] Geometric flows and Strominger systems
    Phong, Duong H.
    Picard, Sebastien
    Zhang, Xiangwen
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2018, 288 (1-2) : 101 - 113
  • [5] ON THE EVOLUTION OF A HERMITIAN METRIC BY ITS CHERN-RICCI FORM
    Tosatti, Valentino
    Weinkove, Ben
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2015, 99 (01) : 125 - 163
  • [6] Regularity results for pluriclosed flow
    Streets, Jeffrey
    Tian, Gang
    [J]. GEOMETRY & TOPOLOGY, 2013, 17 (04) : 2389 - 2429
  • [7] Balanced metrics on non-K?hler Calabi-Yau threefolds.[J].Fu; J.;Li; J.;Yau; S.-T..Journal of Differential Geometry.2012, 1
  • [8] Convergence of the parabolic complex Monge–Ampère equation on compact Hermitian manifolds.[J].Matt Gill.Communications in Analysis and Geometry.2011, 2
  • [9] Hermitian curvature flow
    Streets, Jeffrey
    Tian, Gang
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (03) : 601 - 634
  • [10] A Parabolic Flow of Pluriclosed Metrics
    Streets, Jeffrey
    Tian, Gang
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (16) : 3101 - 3133