Emerging deep learning methods for single-cell RNA-seq data analysis

被引:0
作者
Jie Zheng
Ke Wang
机构
[1] SchoolofInformationScienceandTechnology,ShanghaiTechUniversity
关键词
D O I
暂无
中图分类号
Q811.4 [生物信息论];
学科分类号
0711 ; 0831 ;
摘要
Deep learning is making major breakthrough in several areas of bioinformatics. Anticipating that this will occur soon for the single-cell RNA-seq data analysis, we review newly published deep learning methods that help tackle computational challenges. Autoencoders are found to be the dominant approach. However, methods based on deep generative models such as generative adversarial networks(GANs) are also emerging in this area.
引用
收藏
页码:247 / 254
页数:8
相关论文
共 52 条
[51]   Single-cell RNA-seq reveals dynamic paracrine control of cellular variation [J].
Shalek, Alex K. ;
Satija, Rahul ;
Shuga, Joe ;
Trombetta, John J. ;
Gennert, Dave ;
Lu, Diana ;
Chen, Peilin ;
Gertner, Rona S. ;
Gaublomme, Jellert T. ;
Yosef, Nir ;
Schwartz, Schraga ;
Fowler, Brian ;
Weaver, Suzanne ;
Wang, Jing ;
Wang, Xiaohui ;
Ding, Ruihua ;
Raychowdhury, Raktima ;
Friedman, Nir ;
Hacohen, Nir ;
Park, Hongkun ;
May, Andrew P. ;
Regev, Aviv .
NATURE, 2014, 510 (7505) :363-+
[52]  
Quantitative single-cell RNA-seq with unique molecular identifiers..[J].Islam Saiful;Zeisel Amit;Joost Simon;La Manno Gioele;Zajac Pawel;Kasper Maria;Lönnerberg Peter;Linnarsson Sten.Nature methods.2014, 2