Emerging deep learning methods for single-cell RNA-seq data analysis

被引:0
作者
Jie Zheng
Ke Wang
机构
[1] SchoolofInformationScienceandTechnology,ShanghaiTechUniversity
关键词
D O I
暂无
中图分类号
Q811.4 [生物信息论];
学科分类号
0711 ; 0831 ;
摘要
Deep learning is making major breakthrough in several areas of bioinformatics. Anticipating that this will occur soon for the single-cell RNA-seq data analysis, we review newly published deep learning methods that help tackle computational challenges. Autoencoders are found to be the dominant approach. However, methods based on deep generative models such as generative adversarial networks(GANs) are also emerging in this area.
引用
收藏
页码:247 / 254
页数:8
相关论文
共 52 条
[1]   snakePipes: facilitating flexible, scalable and integrative epigenomic analysis [J].
Bhardwaj, Vivek ;
Heyne, Steffen ;
Sikora, Katarzyna ;
Rabbani, Leily ;
Rauer, Michael ;
Kilpert, Fabian ;
Richter, Andreas S. ;
Ryan, Devon P. ;
Manke, Thomas .
BIOINFORMATICS, 2019, 35 (22) :4757-4759
[2]   Data denoising with transfer learning in single-cell transcriptomics [J].
Wang, Jingshu ;
Agarwal, Divyansh ;
Huang, Mo ;
Hu, Gang ;
Zhou, Zilu ;
Ye, Chengzhong ;
Zhang, Nancy R. .
NATURE METHODS, 2019, 16 (09) :875-+
[3]   Deep learning: new computational modelling techniques for genomics [J].
Eraslan, Gokcen ;
Avsec, Ziga ;
Gagneur, Julien ;
Theis, Fabian J. .
NATURE REVIEWS GENETICS, 2019, 20 (07) :389-403
[4]   Comprehensive Integration of Single-Cell Data [J].
Stuart, Tim ;
Butler, Andrew ;
Hoffman, Paul ;
Hafemeister, Christoph ;
Papalexi, Efthymia ;
Mauck, William M., III ;
Hao, Yuhan ;
Stoeckius, Marlon ;
Smibert, Peter ;
Satija, Rahul .
CELL, 2019, 177 (07) :1888-+
[5]  
Parameter tuning is a key part of dimensionality reduction via deep variational autoencoders for single cell RNA transcriptomics..[J].Hu Qiwen;Greene Casey S.Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.2019,
[6]  
Combining gene ontology with deep neural networks to enhance the clustering of single cell RNA-Seq data.[J].Jiajie Peng;Xiaoyu Wang;Xuequn Shang.BMC Bioinformatics.2019, S8
[7]   Challenges in unsupervised clustering of single-cell RNA-seq data [J].
Kiselev, Vladimir Yu ;
Andrews, Tallulah S. ;
Hemberg, Martin .
NATURE REVIEWS GENETICS, 2019, 20 (05) :273-282
[8]   Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning [J].
Deng, Yue ;
Bao, Feng ;
Dai, Qionghai ;
Wu, Lani F. ;
Altschuler, Steven J. .
NATURE METHODS, 2019, 16 (04) :311-+
[9]   Single-cell RNA-seq denoising using a deep count autoencoder [J].
Eraslan, Goekcen ;
Simon, Lukas M. ;
Mircea, Maria ;
Mueller, Nikola S. ;
Theis, Fabian J. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]  
PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data..[J].Franzén Oscar;Gan Li-Ming;Björkegren Johan L M.Database : the journal of biological databases and curation.2019,