Analysis of thermal degradation of banana (Musa balbisiana) trunk biomass waste using iso-conversional models

被引:83
作者
Kumar M. [1 ]
Shukla S.K. [2 ]
Upadhyay S.N. [1 ]
Mishra P.K. [1 ]
机构
[1] Department of Chemical Engineering &Technology Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh
[2] Department of Transport Science & Technology, School of Engineering & Technology, Central University of Jharkhand, Ranchi
来源
Upadhyay, S.N. (snupadhyay.che@itbhu.ac.in) | 1600年 / Elsevier Ltd卷 / 310期
关键词
Advanced iso-conversional model; Banana trunk biomass; Kinetic analysis; Reaction mechanism; TGA/DTG analysis; Thermodynamic parameters;
D O I
10.1016/j.biortech.2020.123393
中图分类号
学科分类号
摘要
The thermo-chemical characterization (proximate and ultimate analyses and higher heating value) of banana trunk biomass waste has been carried out. The thermo-gravimetric and differential scanning calorimetric (DSC) investigations have been made at heating rates of 10, 15, 20 and 25 °C/min. The TGA data have been used to carry out kinetic analysis and evaluate the kinetic and thermodynamic parameters using iso-conversional models. The values of activation energy increase with conversion (α) irrespective of the iso-conversional model used. The average values of activation energies (Eα) are found to be 386.21, 355.43, 385.77, 355.01, 379.67, and 292.78 kJ/mol for Flynn-Wall-Ozawa (FWO), Starink, Kissinger-Akahira-Sunose (KAS), Tang, Vyzovkin and Vyzovkin AIC model, respectively. The average values of change in enthalpy, Gibbs free energy, and entropy have been calculated. The reaction mechanisms of pyrolysis have been predicted using Criado's method. © 2020 Elsevier Ltd
引用
收藏
相关论文
共 54 条
  • [31] Mishra R.K., Mohanty K., Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis, Bioresour. Technol., 251, pp. 63-74, (2018)
  • [32] Nolasco A.M., Soffner M.L.A.P., Nolasco A.C., (1998)
  • [33] Osman A.I., Abdelkader A., Johnston C.R., Morgan K., Rooney D.W., Thermal investigation and kinetic modeling of lignocellulosic biomass combustion for energy production and other applications, Ind. Eng. Chem. Res., 56, pp. 12119-12130, (2017)
  • [34] Ozawa T., A new method of analyzing thermogravimetric data, Bull. Chem. Soc. Jpn., 38, pp. 1881-1886, (1965)
  • [35] Padam B.S., Tin H.S., Chye F.Y., Abdullah M.I., Banana by-products: an under-utilized renewable food biomass with great potential, J. Food Sci. Technol., 51, pp. 3527-3545, (2014)
  • [36] Padam B.S., Tin H.S., Chye F.Y., Abdullah M.I., Banana by-products: An under-utilized renewable food biomass with great potential, J. Food Sci. Tech., 49, 5, pp. 1-19, (2012)
  • [37] Ridout A.J., Carrier M., Gorgens J., Fast pyrolysis of low and high ash paper waste sludge: Influence of reactor temperature and pellet size, J. Anal. Appl. Pyrolysis, 111, pp. 64-75, (2015)
  • [38] Sellin N., Oliveira B.G., Marangoni C., Souza O., Oliveira A.P.N., Oliveira T.M.N., Use of bananaculture waste to produce briquettes, Chemical Engineering Transactions, 32, pp. 349-354, (2013)
  • [39] Sellin N., Krohl D.R., Marangoni C., Souza O., Oxidative fast pyrolysis of banana leaves in fluidized bed reactor, Renew Energy, 96, pp. 56-64, (2016)
  • [40] Selvarajoo A., Hanson S., Inverstigation of biochar from banana peel, Int. J. Environ. Ecol. Eng., 2, (2015)