Analysis of thermal degradation of banana (Musa balbisiana) trunk biomass waste using iso-conversional models

被引:83
作者
Kumar M. [1 ]
Shukla S.K. [2 ]
Upadhyay S.N. [1 ]
Mishra P.K. [1 ]
机构
[1] Department of Chemical Engineering &Technology Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh
[2] Department of Transport Science & Technology, School of Engineering & Technology, Central University of Jharkhand, Ranchi
来源
Upadhyay, S.N. (snupadhyay.che@itbhu.ac.in) | 1600年 / Elsevier Ltd卷 / 310期
关键词
Advanced iso-conversional model; Banana trunk biomass; Kinetic analysis; Reaction mechanism; TGA/DTG analysis; Thermodynamic parameters;
D O I
10.1016/j.biortech.2020.123393
中图分类号
学科分类号
摘要
The thermo-chemical characterization (proximate and ultimate analyses and higher heating value) of banana trunk biomass waste has been carried out. The thermo-gravimetric and differential scanning calorimetric (DSC) investigations have been made at heating rates of 10, 15, 20 and 25 °C/min. The TGA data have been used to carry out kinetic analysis and evaluate the kinetic and thermodynamic parameters using iso-conversional models. The values of activation energy increase with conversion (α) irrespective of the iso-conversional model used. The average values of activation energies (Eα) are found to be 386.21, 355.43, 385.77, 355.01, 379.67, and 292.78 kJ/mol for Flynn-Wall-Ozawa (FWO), Starink, Kissinger-Akahira-Sunose (KAS), Tang, Vyzovkin and Vyzovkin AIC model, respectively. The average values of change in enthalpy, Gibbs free energy, and entropy have been calculated. The reaction mechanisms of pyrolysis have been predicted using Criado's method. © 2020 Elsevier Ltd
引用
收藏
相关论文
共 54 条
  • [1] Abdullah N., Sulaiman F., Miskam M.A., Taib R.M., Characterization of banana (Musa spp, (2014)
  • [2] Akahira T., Sunose T., Method of determining activation deterioration constant of electrical insulating materials, Res. Report Chiba Inst. Technol., 16, pp. 22-23, (1971)
  • [3] Bartocci P., Anca-Couce A., Slopiecka K., Nefkens S., Evic N., Retschitzegger S., Barbanera M., Buratti C., Cotana F., Bidini G., Fantozzi F., Pyrolysis of pellets made with biomass and glycerol: kinetic analysis and evolved gas analysis, Biomass Bioenergy, 97, pp. 11-19, (2017)
  • [4] Bardiya N., Somayaji D., Khanna S., Biomethanation of banana peel and pineapple waste, Bioresour. Technol, 58, pp. 73-76, (1996)
  • [5] Bilba K., Arsena M.A., Ouensanga A., Study of banana and coconut fibers: Botanical composition, thermal degradation and textural observations, Bioresour. Technol., 98, 1, pp. 56-68, (2007)
  • [6] Branca C., Blasi C.D., A lumped Kinetic model for banana peel combustion, Thermochim. Acta, 614, pp. 68-75, (2015)
  • [7] Cheng Q., Jiang M., Chen Z., Wang X., Xiao B., Pyrolysis and kinetic behavior of banana stem using thermogravimetric analysis, Energy Sources Part A, 38, 22, pp. 3383-3390, (2016)
  • [8] Criado J.M., Malek J., Ortega A., Applicability of the master plots in kinetic analysis of non-isothermal data, Thermochim. Acta, 147, pp. 377-385, (1989)
  • [9] Damartzis T., Vamvuka D., Sfakiotakis S., Zabaniotou A., (2011)
  • [10] De Oliveira Maia B.G., Souza O., Marangoni C., Hotza D., De Oliveira A.P.N., Sellin N., Production and characterization of fuel briquettes from banana leaves waste, Chem. Eng. Trans., 37, pp. 439-444, (2014)