共 9 条
- [1] Xiong J., Zhang T.Y., Shi S.Q., Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses, MRS Commun, 8, pp. 1-10, (2019)
- [2] Agrawal A., Choudhary A., An online tool for predicting fatigue strength of steel alloys based on ensemble data mining, Int J Fatigue, 113, pp. 389-400, (2018)
- [3] Aourag H., Prediction of superlattices ultra hard aluminum rare-earth intermetallic compounds, Jnl Comp Theo Nano, 11, pp. 589-595, (2014)
- [4] Dey S., Dey P., Datta S., Design of novel age-hardenable aluminium alloy using evolutionary computation, J Alloys Compd, 704, pp. 373-381, (2017)
- [5] Dey S., Sultana N., Dey P., Et al., Intelligent design optimization of age-hardenable Al alloys, Comput Mater Sci, 153, pp. 315-325, (2018)
- [6] Just E., New formulas for calculating hardenability curves, Metal Progress, 95, pp. 87-88, (1969)
- [7] Vermeulen W.G., Van Der Wolk P.J., De Weijer A.P., Et al., Prediction of Jominy hardness profiles of steels using artificial neural networks, J Mater Eng Perform, 5, pp. 57-63, (1996)
- [8] Filetin T., Majetic D., Zmak I., Prediction the Jominy curves by means of neural network, Proceedings of the 4th ASM Heat Treatment and Surface Engineering Conference in Europe, pp. 353-361, (1998)
- [9] Hastie T., Tibshirani R., Friedman J., The Elements of Statistical Learning: Data Mining, Inference, and Prediction, (2009)