Kinetic triplet from low-temperature carburization and carbon deposition reactions

被引:7
作者
Zhang, Wei [1 ]
Li, Kui [1 ]
Dong, Jian-hong [2 ,3 ]
Li, Cheng-zhi [1 ]
Liu, Ai-hua [4 ]
Zhang, Ju-hua [2 ]
Xue, Zheng-liang [2 ]
机构
[1] Wuhan Univ Sci & Technol, State Key Lab Refractories & Met, Wuhan 430081, Hubei, Peoples R China
[2] Wuhan Univ Sci & Technol, Key Lab Ferrous Met & Resources Utilizat, Minist Educ, Wuhan 430081, Hubei, Peoples R China
[3] Hanshan Normal Univ, Chaozhou 521041, Guangdong, Peoples R China
[4] Northeastern Univ, Key Lab Ecol Utilizat Multimetall Mineral, Educ Minist, Shenyang 110819, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Kinetic triplet; Carburization reaction; Carbon deposition; Non-isothermal kinetic; Magnetite; Hematite; MAGNETIC-PROPERTIES; BLAST-FURNACE; IRON CARBIDES; MODEL-FREE; DECOMPOSITION; REDUCTION; CEMENTITE; MONOXIDE; BEHAVIOR; METAL;
D O I
10.1007/s42243-022-00780-w
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Carbon deposition reaction is unfavorable for smooth operation of blast furnace, while the product of carburization reaction is a superior iron-bearing raw material in non-blast furnace routes. The kinetic triplet of these two reactions was obtained based on non-isothermal kinetic analysis. According to the Sharp-Wentworth method, the activation energy of the carburization reaction is 397.77 kJ/mol, and the activation energies of the carbon depositions on hematite and magnetite are 188.92 and 100.89 kJ/mol, respectively. The carburization reaction is controlled by the Jander mechanism, and the carbon depositions on hematite and magnetite are both controlled by the mechanism of Zhuravlev-Lesokhin-Tempelman. Based on Coats-Redfern method, the activation energies of the above three reactions are 360.65, 149.29, and 102.36 kJ/mol, respectively. The carburization reaction is a first-order reaction, while the carbon depositions on hematite and magnetite are both third-order reaction. In particular, the negative activation energy is obtained if considering the anti-Arrhenius circumstance in the Sharp-Wentworth method. Based on above results, it is feasible to adopt non-isothermal kinetic method to study the kinetic triplet of a reaction. According to the obtained activation energies and reaction mechanism functions, the simulated kinetic data are in good agreement with the experimental values even using the negative activation energy.
引用
收藏
页码:1545 / 1558
页数:14
相关论文
共 50 条
[41]   Study on the formation process of low-temperature ash deposition induced by ammonium bisulfate in pulverized coal-fired boiler [J].
Wang, Limin ;
Bu, Yufan ;
Tang, Chunli ;
Lv, Cheng ;
Chen, Xun ;
Che, Defu .
ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2020, 15 (01)
[42]   Low-temperature growth of graphene nanoplatelets by hot-wire chemical vapour deposition [J].
Anuar, Nur Afira binti ;
Nor, Nurul Hidayah Mohamad ;
Awang, Rozidawati binti ;
Nakajima, Hideki ;
Tunmee, Sarayut ;
Tripathi, Manoj ;
Dalton, Alan ;
Goh, Boon Tong .
SURFACE & COATINGS TECHNOLOGY, 2021, 411
[43]   Distribution of oxygen functional groups of graphene oxide obtained from low-temperature atomic layer deposition of titanium oxide [J].
Shin, Dong Seok ;
Kim, Hyun Gu ;
Ahn, Ho Seon ;
Jeong, Hu Young ;
Kim, Youn-Jung ;
Odkhuu, Dorj ;
Tsogbadrakh, N. ;
Lee, Han-Bo-Ram ;
Kim, Byung Hoon .
RSC ADVANCES, 2017, 7 (23) :13979-13984
[44]   Low-temperature oxidation of light and heavy oils via thermal analysis: Kinetic analysis and temperature zone division [J].
Zhao, Shuai ;
Pu, Wanfen ;
Varfolomeev, Mikhail A. ;
Yuan, Chengdong ;
Pan, Jingjun ;
Wang, Ruyan ;
Chen, Long ;
Kan, Ni .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2018, 168 :246-255
[45]   Effect of C2H2/H2 Gas Mixture Ratio in Direct Low-Temperature Vacuum Carburization [J].
Song, Yeongha ;
Kim, Jun-Ho ;
Kim, Kyu-Sik ;
Kim, Sunkwang ;
Song, Pung Keun .
METALS, 2018, 8 (07)
[46]   Low-Temperature Property Improvement on Green and Low-Carbon Natural Ester Insulating Oil [J].
Yang, Tao ;
Wang, Feipeng ;
Yao, Degui ;
Li, Jian ;
Zheng, Hanbo ;
Yao, Wei ;
Lv, Zhongbin ;
Huang, Zhengyong .
IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2022, 29 (04) :1459-1464
[47]   Characterization of Hydrous Palladium Oxide: Implications for Low-Temperature Carbon Monoxide Oxidation [J].
Parker, Stewart F. ;
Refson, Keith ;
Hannon, Alex C. ;
Barney, Emma R. ;
Robertson, Stephen J. ;
Albers, Peter .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (33) :14164-14172
[48]   Low-temperature magnetoresistance of multi-walled carbon nanotubes with perfect structure [J].
Ovsiienko, I. V. ;
Len, T. A. ;
Mirzoiev, I. G. ;
Beliayev, E. Yu. ;
Gnida, D. ;
Matzui, L. Yu. ;
Heraskevych, V. M. .
LOW TEMPERATURE PHYSICS, 2022, 48 (02) :89-98
[49]   A Theoretical Study on the Mechanism of Small Carbon Clusters Growth in Low-Temperature Plasma [J].
Polynskaya, Yulia G. ;
Matsokin, Nikita A. ;
Kedalo, Yegor M. ;
Knizhnik, Andrey A. ;
Sinitsa, Alex S. ;
Potapkin, Boris V. .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2024, 44 (01) :193-209
[50]   Experimental evidence of flexural phonons in low-temperature heat capacity of carbon nanotubes [J].
Barabashko, M. S. ;
Krivchikov, A. I. ;
Jezowski, A. ;
Bezkrovnyi, O. ;
Bagatskii, M. I. ;
Sumarokov, V. V. ;
Boiko, V. ;
Szewczyk, D. .
CARBON TRENDS, 2025, 19