Broad-Tuning, Dichroic Metagrating Fabry-Perot Filter Based on Liquid Crystal for Spectral Imaging

被引:0
作者
Guo T. [1 ]
Lin Z. [1 ]
Xu X. [1 ]
Zhang Z. [1 ]
Chen X. [1 ]
He N. [1 ]
Wang G. [2 ]
Jin Y. [1 ]
Evans J. [1 ]
He S. [1 ,3 ]
机构
[1] Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, National Engineering Research Center for Optical Instruments, Zhejiang University, Hangzhou
[2] Zhejiang Suosi Technology Co. Ltd, Zhejiang, Wenzhou
[3] Taizhou Hospital, Zhejiang University, Taizhou
来源
Progress in Electromagnetics Research | 2023年 / 177卷
基金
中国国家自然科学基金;
关键词
Color - Display devices - Fabry-Perot interferometers - Incident light - Light polarization - Tuning;
D O I
10.2528/PIER23030703
中图分类号
学科分类号
摘要
Dynamic structural color can empower devices with additional functions like spectrum and polarization detection beyond display or imaging. However, present methods suffer from narrow tuning ranges, low throughput, or bulky volumes. In this work, a tunable filter composed of a dichroic metagrating Fabry-Perot cavity and liquid crystal (LC) material is proposed and investigated. By modulating the polarization of the incident light with the LC, the color response can change from blue to green and deep red due to the ‘mode jumping’ effect, with a tuning range of around 300 nm. Besides, we experimentally demonstrate the use of this device as a spectral imager in the visible range. Experimental results show that spectral resolvability can be around 10 nm, with the largest peak wavelength inaccuracy of ∼ 5 nm. This approach shows superior performance over traditional liquid crystal tunable filters in low light conditions and indicates the potential of dynamic structural color for miniaturized spectroscopic applications. © 2023, Electromagnetics Academy. All rights reserved.
引用
收藏
页码:43 / 51
页数:8
相关论文
共 30 条
[1]  
Yu Y. F., Zhu A. Y., Paniagua-Dominguez R., Fu Y. H., Luk'yanchuk B., Kuznetsov A. I., High-transmission dielectric metasurface with 2π phase control at visible wavelengths, Laser & Photonics Reviews, 9, pp. 412-418, (2015)
[2]  
Yu N., Aieta F., Genevet P., Kats M. A., Gaburro Z., Capasso F., A broadband, background-free quarter-wave plate based on plasmonic metasurfaces, Nano Lett, 12, pp. 6328-6333, (2012)
[3]  
Ding F., Wang Z., He S., Shalaev V. M., Kildishev A. V., Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach, ACS Nano, 9, pp. 4111-4119, (2015)
[4]  
Khorasaninejad M., Chen W. T., Devlin R. C., Oh J., Zhu A. Y., Capasso F., Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging, Science, 352, pp. 1190-1194, (2016)
[5]  
Zheng G., Muhlenbernd H., Kenney M., Li G., Zentgraf T., Zhang S., Metasurface holograms reaching 80% efficiency, Nature Nanotechnology, 10, pp. 308-312, (2015)
[6]  
Kumar K., Duan H., Hegde R. S., Koh S. C., Wei J. N., Yang J. K., Printing colour at the optical diffraction limit, Nature Nanotechnology, 7, pp. 557-561, (2012)
[7]  
Cheng F., Gao J., Luk T. S., Yang X., Structural color printing based on plasmonic metasurfaces of perfect light absorption, Scientific Reports, 5, (2015)
[8]  
Sun S., Zhou Z., Zhang C., Et al., All-dielectric full-color printing with TiO<sub>2</sub> metasurfaces, ACS Nano, 11, pp. 4445-4452, (2017)
[9]  
Liu N., Mesch M., Weiss T., Hentschel M., Giessen H., Infrared perfect absorber and its application as plasmonic sensor, Nano Lett, 10, pp. 2342-2348, (2010)
[10]  
He N., Xu X., Guo T., Et al., Highly compact all-solid-state beam steering module based on a metafiber, ACS Photonics, 9, pp. 3094-3101, (2022)