Focused ion beam-scanning electron microscopy provides novel insights of drug delivery phenomena

被引:0
作者
Faber T. [1 ]
McConville J.T. [2 ]
Lamprecht A. [1 ,3 ]
机构
[1] Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn
[2] Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM
[3] Université de Franche-Comté, INSERM UMR1098 Right, Besançon
关键词
Imaging; Intracellular delivery; Scanning electron microscopy;
D O I
10.1016/j.jconrel.2023.12.048
中图分类号
O572 [高能物理学];
学科分类号
摘要
Scanning electron microscopy (SEM) has long been a standard tool for morphological analyses, providing sub micrometer resolution of pharmaceutical formulations. However, analysis of internal morphologies of such formulations can often be biased due to the introduction of artifacts that originate from sample preparation. A recent advancement in SEM, is the focused ion beam scanning electron microscopy (FIB-SEM). This technique uses a focused ion beam (FIB) to remove material with nanometer precision, to provide virtually sample-independent access to sub-surface structures. The FIB can be combined with SEM imaging capabilities within the same instrumentation. As a powerful analytical tool, electron microscopy and FIB-milling are performed sequentially to produce high-resolution 3D models of structural peculiarities of diverse drug delivery systems or their behavior in a biological environment, i.e. intracellular or -tissue distribution. This review paper briefly describes the technical background of the method, outlines a wide array of potential uses within the drug delivery field, and focuses on intracellular transport where high-resolution images are an essential tool for mechanistical insights. © 2023 Elsevier B.V.
引用
收藏
页码:312 / 327
页数:15
相关论文
共 162 条
  • [1] Betzig E., Hell S.W., Moerner W.E.
  • [2] Dubochet J., Frank J., Henderson R.
  • [3] Fleming N., The microscopic advances that are opening big opportunities in cell biology, Nature., 575, pp. S91-S94, (2019)
  • [4] Kuhlbrandt W., The resolution revolution, Science., 343, pp. 1443-1444, (2014)
  • [5] Carlton R.A., Pharmaceutical Microscopy, (2011)
  • [6] Pinotsi D., Rodighiero S., Campioni S., Csucs G., An easy path for correlative Electron and super-resolution light microscopy, Sci. Rep., 9, (2019)
  • [7] Ostrowski A., Nordmeyer D., Boreham A., Holzhausen C., Mundhenk L., Graf C., Meinke M.C., Vogt A., Hadam S., Lademann J., Ruhl E., Alexiev U., Gruber A.D., Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques, Beilstein J. Nanotechnol., 6, pp. 263-280, (2015)
  • [8] Ando T., Bhamidimarri S.P., Brending N., Colin-York H., Collinson L., Jonge N.D., de Pablo P.J., Debroye E., Eggeling C., Franck C., Fritzsche M., Gerritsen H., Giepmans B.N.G., Grunewald K., Hofkens J., Hoogenboom J.P., Janssen K.P.F., Kaufmann R., Klumperman J., Kurniawan N., Kusch J., Liv N., Parekh V., Peckys D.B., Rehfeldt F., Reutens D.C., Roeffaers M.B.J., Salditt T., Schaap I.A.T., Schwarz U.S., Verkade P., Vogel M.W., Wagner R., Winterhalter M., Yuan H., Zifarelli G., The 2018 correlat
  • [9] Clogston J.D., Hackley V.A., Prina-Mello A., Puri S., Sonzini S., Soo P.L., Sizing up the next generation of nanomedicines, Pharm. Res., 37, (2019)
  • [10] Guggenheim E.J., Khan A., Pike J., Chang L., Lynch I., Rappoport J.Z., Comparison of confocal and super-resolution reflectance imaging of metal oxide nanoparticles, PLoS One, 11, (2016)