Optimizing Laser Conditions and Controlling Microstructure/Properties of Laser Powder Bed Fused Al-Si Alloys

被引:0
作者
Suzuki A. [1 ]
Takata N. [1 ]
Kobashi M. [1 ]
Kato M. [2 ]
机构
[1] Dept. Materials Process Engineering, Graduate School of Engineering, Nagoya University, Tokai National Higher Education and Research System, 1 Furo-cho, Chikusa-ku, Nagoya
[2] Aichi Center for Industry and Science Technology, 1267–1 Akiai, Yakusa-cho, Toyota
来源
Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy | 2022年 / 69卷 / 10期
关键词
additive manufacturing; Al-Si alloy; machine learning; microstructure; relative density;
D O I
10.2497/jjspm.69.417
中图分类号
学科分类号
摘要
In the laser beam powder bed fusion (PBF-LB) processes, laser parameters need to be customized for fabricating dense components. Al-Si alloys are representative Al alloys used for the PBF-LB processes. The Al-Si alloys fabricated by the PBF-LB processes exhibit characteristic microstructures and mechanical properties, which are affected by the laser parameters. This paper describes the effect of laser conditions on the relative density, microstructure, and mechanical properties of Al-12Si (mass%) alloy fabricated by the PBF-LB process. The first topic is a machine-learning-assisted exploration of laser parameters (laser power and scan speed) for fabricating dense Al-12Si alloy parts. Using a neural network model, the laser condition range for fabricating dense Al-12Si alloy parts is predicted. A methodology for accurately predicting the laser condition range for fabricating dense components is introduced. The second topic is controlling the microstructures and mechanical properties of the dense Al-12Si alloys. Variations in α-Al crystal grain size/orientation, the width of primary α-Al phase, and solute Si content in α-Al matrix with laser conditions are introduced. The changes in mechanical properties with laser conditions and correlation with microstructural features are also described. © 2022 Japan Society of Powder and Powder Metallurgy.
引用
收藏
页码:417 / 425
页数:8
相关论文
共 38 条
[1]  
Kyogoku H., Ikeshoji T.-T., Zukai Kinzoku 3D Sekisouzoukei No Kiso, (2017)
[2]  
Koizumi Y., Chiba A., Nomura N., Nakano T., Materia Japan, 56, pp. 686-690, (2017)
[3]  
Eyers Daniel, Managing 3D printing: Operations Management for Additive Manufacturing, pp. 53-55, (2020)
[4]  
Thijs L., Verhaeghe F., Craeghs T., Van Humbeeck J., Kruth J.-P, Acta Mater, 58, pp. 3303-3312, (2010)
[5]  
Amato K. N., Gaytan S. M., Murr L. E., Martinez E., Shindo P. W., Hernandez J., Collins S., Medina F., Acta Mater, 60, pp. 2229-2239, (2012)
[6]  
Sing S. L., Huang S., Yeong W. Y., Mater. Sci. Eng. A, 769, (2020)
[7]  
Liverani E., Toschi S., Ceschini L., Fortunato A., J. Mater. Proc. Technol, 249, pp. 255-263, (2017)
[8]  
Kempen K., Thijs L., Van Humbeeck J., Kruth J.-P., Phys. Procedia, 39, pp. 430-446, (2012)
[9]  
Li S., Cai B., Duan R., Tang L., Song Z., White D., Magdysyuk O. V., Attallah M. M., Acta Metallurgica Sinica, 35, pp. 78-92, (2022)
[10]  
Ibe H., Kato Y., Yamada J., Kato M., Suzuki A., Takata N., Kobashi M., Mater. Des, 210, (2021)