Understanding Risks of Privacy Theater with Differential Privacy

被引:6
|
作者
Smart M.A. [1 ]
Sood D. [1 ]
Vaccaro K. [1 ]
机构
[1] University of California San Diego, San Diego, CA
关键词
differential privacy; human-centered privacy; privacy theater;
D O I
10.1145/3555762
中图分类号
学科分类号
摘要
Differential privacy is one of the most popular technologies in the growing area of privacy-conscious data analytics. But differential privacy, along with other privacy-enhancing technologies, may enable privacy theater. In implementations of differential privacy, certain algorithm parameters control the tradeoff between privacy protection for individuals and utility for the data collector; thus, data collectors who do not provide transparency into these parameters may obscure the limited protection offered by their implementation. Through large-scale online surveys, we investigate whether explanations of differential privacy that hide important information about algorithm parameters persuade users to share more browser history data. Surprisingly, we find that the explanations have little effect on individuals' willingness to share data. In fact, most people make up their minds about whether to share before they even learn about the privacy protection. © 2022 Owner/Author.
引用
收藏
相关论文
共 50 条
  • [1] Understanding ε for Differential Privacy in Differencing Attack Scenarios
    Ashena, Narges
    Dell'Aglio, Daniele
    Bernstein, Abraham
    SECURITY AND PRIVACY IN COMMUNICATION NETWORKS, SECURECOMM 2021, PT I, 2021, 398 : 187 - 206
  • [2] Limiting Privacy Breaches in Differential Privacy
    Ouyang Jia
    Yin Jian
    Liu Shao-Peng
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND SERVICE SYSTEM (CSSS), 2014, 109 : 657 - 664
  • [3] Privacy at Scale: Local Differential Privacy in Practice
    Cormode, Graham
    Jha, Somesh
    Kulkarni, Tejas
    Li, Ninghui
    Srivastava, Divesh
    Wang, Tianhao
    SIGMOD'18: PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2018, : 1655 - 1658
  • [4] Optimal Distribution of Privacy Budget in Differential Privacy
    Bkakria, Anis
    Tasidou, Aimilia
    Cuppens-Boulahia, Nora
    Cuppens, Frederic
    Bouattour, Fatma
    Ben Fredj, Feten
    RISKS AND SECURITY OF INTERNET AND SYSTEMS, 2019, 11391 : 222 - 236
  • [5] Differential privacy in deep learning: Privacy and beyond
    Wang, Yanling
    Wang, Qian
    Zhao, Lingchen
    Wang, Cong
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 148 : 408 - 424
  • [6] When Differential Privacy Implies Syntactic Privacy
    Ekenstedt, Emelie
    Ong, Lawrence
    Liu, Yucheng
    Johnson, Sarah
    Yeoh, Phee Lep
    Kliewer, Joerg
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 : 2110 - 2124
  • [7] Privacy-Preserving Monotonicity of Differential Privacy Mechanisms
    Liu, Hai
    Wu, Zhenqiang
    Zhou, Yihui
    Peng, Changgen
    Tian, Feng
    Lu, Laifeng
    APPLIED SCIENCES-BASEL, 2018, 8 (11):
  • [8] Trajectory Privacy Protection Method Based on Differential Privacy
    Yuan S.-L.
    Pi D.-C.
    Xu M.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2021, 49 (07): : 1266 - 1273
  • [9] Privacy Preservation for Trajectory Publication Based on Differential Privacy
    Yao, Lin
    Chen, Zhenyu
    Hu, Haibo
    Wu, Guowei
    Wu, Bin
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2022, 13 (03)
  • [10] Towards Benchmarking Privacy Risk for Differential Privacy: A Survey
    Prokhorenkov, Dmitry
    Cao, Yang
    PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON SYSTEMS FOR ENERGY-EFFICIENT BUILDINGS, CITIES, AND TRANSPORTATION, BUILDSYS 2023, 2023, : 322 - 327