Uncertainty-Aware Multidimensional Scaling

被引:5
作者
Hagele D. [1 ]
Krake T. [1 ]
Weiskopf D. [1 ]
机构
[1] University of Stuttgart, Germany
关键词
dimensionality reduction; multidimensional scaling; non-linear projection; Uncertainty visualization;
D O I
10.1109/TVCG.2022.3209420
中图分类号
学科分类号
摘要
We present an extension of multidimensional scaling (MDS) to uncertain data, facilitating uncertainty visualization of multidimensional data. Our approach uses local projection operators that map high-dimensional random vectors to low-dimensional space to formulate a generalized stress. In this way, our generic model supports arbitrary distributions and various stress types. We use our uncertainty-aware multidimensional scaling (UAMDS) concept to derive a formulation for the case of normally distributed random vectors and a squared stress. The resulting minimization problem is numerically solved via gradient descent. We complement UAMDS by additional visualization techniques that address the sensitivity and trustworthiness of dimensionality reduction under uncertainty. With several examples, we demonstrate the usefulness of our approach and the importance of uncertainty-aware techniques. © 2022 IEEE.
引用
收藏
页码:23 / 32
页数:9
相关论文
共 37 条
[1]  
Bakker R., Poole K.T., Bayesian metric multidimensional scaling, Political Analysis, 21, 1, pp. 125-140, (2013)
[2]  
Bonneau G., Hege H., Johnson C.R., Oliveira M.M., Potter K., Rheingans P., Schultz T., Overview and state-of-the-art of uncertainty visualization, Scientific Visualization, pp. 3-27, (2014)
[3]  
Brodlie K., Osorio R.S.A., Lopes A., A review of uncertainty in data visualization, Expanding the Frontiers of Visual Analytics and Visualization, pp. 81-109, (2012)
[4]  
Chen H., Zhang S., Chen W., Mei H., Zhang J., Mercer A., Liang R., Qu H., Uncertainty-aware multidimensional ensemble data visualization and exploration, IEEE Transactions on Visualization and Computer Graphics, 21, 9, pp. 1072-1086, (2015)
[5]  
Chi E.H., Riedl J., An operator interaction framework for visualization systems, IEEE Symposium on Information Visualization (InfoVis '98), pp. 63-70, (1998)
[6]  
Correa C.D., Chan Y.-H., Ma K.-L., A framework for uncertaintyaware visual analytics, 2009 IEEE Symposium on Visual Analytics Science and Technology, pp. 51-58, (2009)
[7]  
Denoeux T., Masson M.-H., Principal component analysis of fuzzy data using autoassociative neural networks, IEEE Transactions on Fuzzy Systems, 12, 3, pp. 336-349, (2004)
[8]  
Goldstein H., Classical Mechanics, (1980)
[9]  
Gortler J., Spinner T., Streeb D., Weiskopf D., Deussen O., Uncertainty-aware principal component analysis, IEEE Transactions on Visualization and Computer Graphics, 26, 1, pp. 822-831, (2020)
[10]  
Griethe H., Schumann H., The visualization of uncertain data: Methods and problems, Simulation und Visualisierung (SimVis 2006), pp. 143-156, (2006)