共 33 条
[1]
Tian Y, Ma J, Lu C., Rolling bearing fault diagnosis under variable conditions using LMD-SVD and extreme learning machine, Mechan. Mach. Theory, 90, pp. 175-186, (2015)
[2]
Zarei J, Poshta J., Bearing fault detection using wavelet packet transform of induction motor stator current, Tribol. Int, 40, 5, pp. 763-769, (2007)
[3]
Meng Z, Zhan X, Li J., An enhancement denoising autoencoder for rolling bearing fault diagnosis, Measurement, 130, pp. 448-454, (2018)
[4]
Wu D, Liu S, Zhang L, Et al., A fog computing-based framework for process monitoring and prognosis in cyber-manufacturing, Manuf. Syst, 43, pp. 25-34, (2017)
[5]
Qian Y N, Yan R Q, Gao R X., A multi-time scale approach to remaining useful life prediction in rolling bearing, Mechan. Syst. Signal Process, 83, pp. 549-567, (2016)
[6]
Shao H D, Jiang H K, Li X Q., Rolling bearing fault detection using continuous deep belief network with locally linear embedding, Comput. Ind, 96, pp. 27-39, (2018)
[7]
Liu J, Wang W, Ma F., A data-model-fusion prognostic framework for dynamic system state forecasting, Eng.Appl. Artif. Intell, 25, pp. 814-823, (2012)
[8]
Wu W, Hu J, Zhang J., Prognostics of machine health condition using an improved ARIMA-based prediction method, ICIEA 2007, Second IEEE Conf. Ind. Electron. Appl, pp. 1062-1067, (2007)
[9]
Liu K, Gebraeel N Z, Shi J., A data-level fusion model for developing composite health indices for degradation modeling and prognostic analysis, IEEE Trans. Autom. Sci. Eng, 10, 3, pp. 652-664, (2013)
[10]
Wu D, Jennings C, Terpenny J., A comparative study on machine learning algorithms for smart manufacturing: Tool wear prediction using random forests, Manuf. Sci. Eng, 139, 7, (2017)