Data Rate-Based Grouping to Resolve Performance Anomaly of Multi-Rate IEEE 802.11ah IoT Networks

被引:9
作者
Mahesh, Miriyala [1 ]
Pavan, Badarla Sri [1 ]
Harigovindan, V.P. [1 ]
机构
[1] Department of Electronics and Communication Engineering, National Institute of Technology Puducherry, Karaikal
来源
IEEE Networking Letters | 2020年 / 2卷 / 04期
关键词
IEEE; 80211ah; Internet of Things; performance anomaly; restricted access window;
D O I
10.1109/LNET.2020.2998469
中图分类号
学科分类号
摘要
In this letter, we consider IEEE 802.11ah based IoT network with rate adaptation, where all the devices contend for the channel access using group-based restricted access window (RAW) mechanism with default uniform grouping scheme. In such multi-rate networks, as each group contains distinct data rate devices, we have observed drastic degradation of throughput performance due to performance anomaly. To resolve this problem, we propose a novel grouping scheme based on data rates. Analytical and simulation results show that the proposed scheme significantly improves aggregate throughput of RAW mechanism with minimal additional overhead, when compared to default uniform grouping scheme. © 2019 IEEE.
引用
收藏
页码:166 / 170
页数:4
相关论文
共 10 条
  • [1] Mahesh M., Harigovindan V.P., Restricted access window-based novel service differentiation scheme for group-synchronized DCF, IEEE Commun. Lett., 23, 5, pp. 900-903, (2019)
  • [2] Zheng L., Ni M., Cai L., Pan J., Ghosh C., Doppler K., Performance analysis of group-synchronized DCF for dense IEEE 802. 11 networks, IEEE Trans. Wireless Commun., 13, 11, pp. 6180-6192, (2014)
  • [3] Heusse M., Rousseau F., Berger-Sabbatel G., Duda A., Performance anomaly of 802. 11b, Proc. IEEE INFOCOM, 2, pp. 836-843, (2003)
  • [4] Lei J.H.J., Tao J., Huang J., Xia Y., A differentiated reservation MAC protocol for achieving fairness and efficiency in multirate IEEE 802. 11 WLANs, IEEE Access, 7, pp. 12133-12145, (2019)
  • [5] Lee Y., Lee H., Choi C.-H., Providing absolute priority and airtime fairness in WLANs, Proc. IEEE GLOBECOM Workshops (GC Wkshps), pp. 733-738, (2011)
  • [6] Kuo Y.-L., Lai K.-W., Lin F.Y.-S., Wen Y.-F., Wu E.H.-K., Chen G., Multirate throughput optimization with fairness constraints in wireless local area networks, IEEE Trans. Veh. Technol., 58, 5, pp. 2417-2425, (2009)
  • [7] Lee J., Lee H., Yi Y., Chong S., Knightly E.W., Chiang M., Making 802. 11 DCF near-optimal: Design, implementation, and evaluation, IEEE/ACM Trans. Netw., 24, 3, pp. 1745-1758, (2016)
  • [8] Kocan E., Domazetovic B., Pejanovic-Djurisic M., Range extension in IEEE 802. 11ah systems through relaying, Wireless Pers. Commun., 97, 2, pp. 1889-1910, (2017)
  • [9] Daneshgaran F., Laddomada M., Mesiti F., Mondin M., Unsaturated throughput analysis of IEEE 802. 11 in presence of non ideal transmission channel and capture effects, IEEE Trans. Wireless Commun., 7, 4, pp. 1276-1286, (2008)
  • [10] Olteanu A., Xiao Y., Security overhead and performance for aggregation with fragment retransmission (AFR) in very high-speed wireless 802. 11 LANs, IEEE Trans. Wireless Commun., 9, 1, pp. 218-226, (2010)