Energy absorption characteristics of modular assembly structures under quasi-static compression load

被引:4
|
作者
Li, Qiqi [1 ]
Wang, Weijun [1 ]
Tan, Hailun [2 ]
Long, Xiangyun [2 ]
Wang, Fang [1 ]
Hu, Lin [1 ]
机构
[1] Changsha Univ Sci & Technol, Coll Automot & Mech Engn, Changsha 410114, Peoples R China
[2] Hunan Univ, State Key Lab Adv Design & Mfg Technol Vehicle, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
Modular assembly structures; Energy absorption; Quasi-static compression load; Parameterization; MULTIOBJECTIVE OPTIMIZATION; CROSS-SECTION; DESIGN; CRASHWORTHINESS; CONSTRUCTION; SQUARE; IMPACT; TUBES;
D O I
10.1016/j.compstruct.2024.118260
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Inspired by the assembly of building blocks, an innovative modular assembly structure (MAS) is proposed. With its modular design and versatility, MAS can be tailored to diverse working environments and task requirements. A prototype MAS is generated through three-dimensional (3D) printing, and subsequent compression tests consistently display energy absorption performance akin to a finite element model, affirming the validity of the simulations. Multiple MASs are obtained through the assembly of oblique cross cells, and the effect of compression direction on the energy absorption capacity of MASs is discussed. It is found that transverse compression outperforms longitudinal compression in energy absorption, and MAS with four cells and transverse loading demonstrates the highest specific energy absorption (SEA) value. Furthermore, quadrilateral, pentagonal, and hexagonal cells are proposed to obtain more MASs, and the compression performance of these MASs is evaluated by varying the frame structure thickness d and supporting structure thickness j of cells. Results highlight the superior energy absorption efficiency of the pentagonal element structure. Notably, parameter d has a more pronounced impact on energy absorption compared with parameter j. When j is 2.0 mm and d increases from 1.0 mm to 2.0 mm, the SEA values of quadrilateral, pentagonal, and hexagonal MASs increase by 113.70, 139.45, and 86.25 J/kg. In summary, MASs exhibit impressive energy absorption capabilities, promising versatile applications in energy absorption and anti-collision mechanisms across various scenarios.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Energy absorption performance of honeycombs with curved cell walls under quasi-static compression
    Feng, Genzhu
    Li, Shi
    Xiao, Lijun
    Song, Weidong
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2021, 210
  • [2] Energy absorption characteristics of a bio-inspired prepreg carbon fiber crash box under quasi-static axial compression
    Alabtah, Fatima Ghassan
    Mahdi, Elsadig
    Khraisheh, Marwan
    COMPOSITES PART C: OPEN ACCESS, 2024, 14
  • [3] Energy absorption of sandwich structures with a kirigami-inspired pyramid foldcore under quasi-static compression and shear
    Ma, Jiayao
    Dai, Huaping
    Chai, Sibo
    Chen, Yan
    MATERIALS & DESIGN, 2021, 206
  • [4] Energy absorption of central self-similar honeycombs under quasi-static axial load
    Guo, Chenghao
    Cheng, Xueyu
    Lu, Lixin
    Pan, Liao
    Wang, Jun
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 274
  • [5] On the energy absorption of tube reinforced foam materials under quasi-static and dynamic compression
    Karagiozova, D.
    Shu, D. W.
    Lu, G.
    Xiang, X.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2016, 105 : 102 - 116
  • [6] Large Deformation and Energy Absorption Behaviour of Perforated Hollow Sphere Structures under Quasi-Static Compression
    Dai, Meiling
    Liang, Junping
    Cheng, Cheng
    Wu, Zhiwen
    Lu, Jiexun
    Deng, Jiyu
    MATERIALS, 2021, 14 (13)
  • [7] Mechanical behavior of nested multi-tubular structures under quasi-static axial load
    Nia, A. Alavi
    Chahardoli, S.
    THIN-WALLED STRUCTURES, 2016, 106 : 376 - 389
  • [8] Energy absorption properties of multi-panel reinforced tubular structure under quasi-static compression loading
    Wang, Kedi
    Wang, Han
    Yang, Huan
    Wang, Wenzhi
    Xi, Xulong
    Bai, Chunyu
    Bai, Erlei
    Fan, Xueling
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024,
  • [9] Energy absorption and failure pattern of hybrid composite tubes under quasi-static axial compression
    Yang, Haiyang
    Lei, Hongshuai
    Lu, Guoxing
    Zhang, Zhong
    Li, Xinyu
    Liu, Yan
    COMPOSITES PART B-ENGINEERING, 2020, 198
  • [10] Crushing behavior and energy absorption of a bio-inspired bi-directional corrugated lattice under quasi-static compression load
    Li, Bo
    Liu, Hua
    Zhang, Qiao
    Yang, Xianfeng
    Yang, Jialing
    COMPOSITE STRUCTURES, 2022, 286