Leveraging the orthogonality of Zernike modes for robust free-space optical communication

被引:0
|
作者
Konwar S. [1 ,2 ]
Boruah B.R. [1 ]
机构
[1] Department of Physics, Indian Institute of Technology Guwahati, Assam, Guwahati
[2] Department of Physics, Abhayapuri College, Bongaigaon, Assam, Abhayapuri
来源
Communications Physics | 2020年 / 3卷
关键词
D O I
10.1038/S42005-020-00468-1
中图分类号
学科分类号
摘要
Free-space optical communication systems exploit the properties of light beams to transfer information through a free-space link. Indeed such systems provide an exciting alternative for communication. Here we introduce information transfer through free-space using a laser beam having its phase encoded with multiple orthogonal aberration modes. We use Zernike polynomials, which form a complete basis set, to represent the aberration modes. The user information is converted to co-efficients of the Zernike modes which are summed digitally to obtain the resultant phase profile. A single phase modulating device then reads the resultant phase to shape the wavefront of the beam to be transmitted. The receiving station estimates the co-efficients of all modes in the beam from a single measurement of a wavefront sensor, to retrieve the user information. We demonstrate data transfer using multiple modes, each with multiple strengths, and external perturbation compensation using the completeness property of the modes. © The Author(s) 2020.
引用
收藏
相关论文
共 50 条
  • [21] Optical Beam Stabilizer for Free-Space Optical Communication Systems
    Bekkali, Abdelmoula
    Fujita, Hideo
    Hattori, Michikazu
    Hara, Yuichiro
    2022 3RD URSI ATLANTIC AND ASIA PACIFIC RADIO SCIENCE MEETING (AT-AP-RASC), 2022,
  • [22] Optical Beam Position Estimation in Free-Space Optical Communication
    Bashir, Muhammad Salman
    Bell, Mark R.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2016, 52 (06) : 2896 - 2905
  • [23] Free-space optical communication with ultralow noise optical amplifiers
    Andrekson, Peter
    2023 IEEE INTERNATIONAL CONFERENCE ON SPACE OPTICAL SYSTEMS AND APPLICATIONS, ICSOS, 2023, : 115 - 117
  • [24] Relay-Assisted Free-Space Optical Communication
    Safari, Majid
    Uysal, Murat
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2008, 7 (12) : 5441 - 5449
  • [26] Optical multiaccess free-space laser communication system
    Jiang, Lun
    Zhang, Li-Zhong
    Wang, Chao
    An, Yan
    Hu, Yuan
    OPTICAL ENGINEERING, 2016, 55 (08)
  • [27] The application of the diversity in mobile free-space optical communication
    Li Yingchun
    Zhang Rui
    INFORMATION OPTICS AND PHOTONICS TECHNOLOGIES II, 2008, 6837
  • [28] PIN photodiode array for free-space optical communication
    H. U. Qinggui
    M. U. Yining
    Photonic Network Communications, 2018, 36 : 224 - 229
  • [29] Hybrid Atmospheric Compensation in Free-Space Optical Communication
    Wang, Tingting
    Zhao, Xiaohui
    JOURNAL OF THE OPTICAL SOCIETY OF KOREA, 2016, 20 (01) : 13 - 21
  • [30] OPTICAL QPPM COMMUNICATION SUBSYSTEM FOR FREE-SPACE LINKS
    WIESMANN, T
    BORNER, S
    OHM, G
    SPACE COMMUNICATIONS, 1990, 7 (4-6) : 443 - 450