Secure internet of medical things based electronic health records scheme in trust decentralized loop federated learning consensus blockchain

被引:3
|
作者
Kuliha M. [1 ]
Verma S. [1 ]
机构
[1] Department of Information Technology, Shri G.S. Institute of Technology & Science, Madhya Pradesh, Indore
来源
International Journal of Intelligent Networks | 2024年 / 5卷
关键词
Blockchain; Electronic health records; Federated learning; Health monitoring systems; Healthcare monitoring; Internet of medical things; MIMIC-III; Normalization; Privacy; Security;
D O I
10.1016/j.ijin.2024.03.001
中图分类号
学科分类号
摘要
Electronic Health Records (EHRs) have become an increasingly significant source of information for healthcare professionals and researchers. Two technical challenges are addressed: motivating federated learning members to contribute their time and effort, and ensuring accurate aggregation of the global model by the centralized federated learning server. To overcome these issues and establish a decentralized solution, the integration of blockchain and federated learning proves effective, offering enhanced security and privacy for smart healthcare. The proposed approach includes a gamified element to incentivize and recognize contributions from federated learning members. This research work offers a solution involving resource management within the Internet of Medical Things (IoMT) using a newly proposed trust decentralized loop federated learning consensus blockchain. The obtained raw data is pre-processed by using handling missing values and adaptive min-max normalization. The appropriate features are selected with the aid of hybrid weighted-leader exponential distribution optimization algorithm. Because, data with multiple features exhibits varying levels of variation across each feature. The selected features are then forwarded to the training phase through the proposed pyramid squeeze attention generative adversarial networks to classify the EHR as positive and negative. The proposed classification model demonstrates high flexibility and scalability, making it applicable to a wide range of network architectures for various computer vision tasks. The introduced model provides better outcomes in terms of 98.5% in the training accuracy and 99% in the validation accuracy over Medical Information Mart for Intensive Care III (MIMIC-III) dataset, which is more efficient than the other traditional methods. © 2024 The Authors
引用
收藏
页码:161 / 174
页数:13
相关论文
共 50 条
  • [11] A Redactable Blockchain Framework for Secure Federated Learning in Industrial Internet of Things
    Wei, Jiannan
    Zhu, Qinchuan
    Li, Qianmu
    Nie, Laisen
    Shen, Zhangyi
    Choo, Kim-Kwang Raymond
    Yu, Keping
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (18) : 17901 - 17911
  • [12] Lightweight Mutual Authentication Scheme Based on Blockchain for Internet of Medical Things
    Qiu, Shi
    Li, Jinqing
    Di, Xiaoqiang
    Li, Xusheng
    Wu, Yunlong
    Ibrahim, Makram
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (07): : 8848 - 8861
  • [13] Secure and Provenance Enhanced Internet of Health Things Framework: A Blockchain Managed Federated Learning Approach
    Rahman, Mohamed Abdur
    Hossain, M. Shamim
    Islam, Mohammad Saiful
    Alrajeh, Nabil A.
    Muhammad, Ghulam
    IEEE ACCESS, 2020, 8 : 205071 - 205087
  • [14] Blockchain-Based Federated Learning Technique for Privacy Preservation and Security of Smart Electronic Health Records
    Guduri, Manisha
    Chakraborty, Chinmay
    Maheswari, V. Uma
    Margala, Martin
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 2608 - 2617
  • [15] Quantum Secure Authentication Scheme for Internet of Medical Things Using Blockchain
    Prajapat, Sunil
    Kumar, Pankaj
    Kumar, Dheeraj
    Das, Ashok Kumar
    Hossain, M. Shamim
    Rodrigues, Joel J. P. C.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (23): : 38496 - 38507
  • [16] Blockchain-based federated learning approaches in internet of things applications
    Li, Xinhai
    Hu, Yuanchao
    Zeng, Lingcheng
    An, Yunzhu
    Yang, Jinsong
    Xiao, Xing
    SECURITY AND PRIVACY, 2024, 7 (06):
  • [17] A Secure Signcryption Scheme for Electronic Health Records Sharing in Blockchain
    Peng, Xizi
    Zhang, Jinquan
    Zhang, Shibin
    Wan, Wunan
    Chen, Hao
    Xia, Jinyue
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2021, 37 (02): : 265 - 281
  • [18] Integration of federated machine learning and blockchain for the provision of secure big data analytics for Internet of Things
    Unal, Devrim
    Hammoudeh, Mohammad
    Khan, Muhammad Asif
    Abuarqoub, Abdelrahman
    Epiphaniou, Gregory
    Hamila, Ridha
    COMPUTERS & SECURITY, 2021, 109
  • [19] Blockchain-Integrated Security for Real-Time Patient Monitoring in the Internet of Medical Things Using Federated Learning
    Khan, Mohammad Faisal
    Abaoud, Mohammad
    IEEE ACCESS, 2023, 11 : 117826 - 117850
  • [20] A Simple Federated Learning-Based Scheme for Security Enhancement Over Internet of Medical Things
    Xu, Zhiang
    Guo, Yijia
    Chakraborty, Chinmay
    Hua, Qiaozhi
    Chen, Shengbo
    Yu, Keping
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (02) : 652 - 663