A novel self-adaptive convolutional neural network model using spatial pyramid pooling for 3D lung nodule computer-aided diagnosis

被引:0
作者
Zhang, Qianqian [1 ]
Yoon, Sangwon [1 ]
机构
[1] SUNY Binghamton, POB 6000, Binghamton, NY 13902 USA
关键词
3D lung nodule diagnosis; self-adaptive convolutional neural network; spatial pyramid pooling; transverse layer pooling; IMAGE DATABASE CONSORTIUM; PULMONARY NODULES; TOMOGRAPHY IMAGES; CLASSIFICATION; CT; HYBRID; LIDC;
D O I
10.1080/24725579.2021.1953638
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
This research proposes a novel self-adaptive convolutional neural network (Adap-Net) model for lung nodule diagnosis on 3D computed tomography (CT) images. Lung cancer is one of the most common cancers with a high mortality rate. Therefore, there is an urgent need to diagnose lung nodules to improve the survival rate, which is challenging because of the nodule heterogeneity and the lack of annotated lung nodule images. Prevailing research for lung nodule diagnosis usually ignores the nodule heterogeneity problem and enlarges the model complexity that degrades the lung nodule diagnosis performance given limited annotated training samples. To overcome the challenges, a transverse layer pooling (TLP) algorithm is proposed and the spatial pyramid pooling (SPP) scheme is integrated, which makes it possible to adaptively extract equal-dimensional feature representations from arbitrary-sized 3D lung nodule images. Meanwhile, the TLP algorithm introduces a layer compression architecture that dramatically reduces the model complexity. Moreover, K-means clustering is adopted to assign appropriate input image sizes for each lung nodule, allowing the mini-batch-based model training. The proposed Adap-Net is comprehensively evaluated and compared to other deep learning (DL) models using 3D CT images from a public dataset. Experimental results show that the proposed Adap-Net model improves the lung nodule diagnosis accuracy up to 12.12% with less than 10% of parameters that are involved in other DL models. In practice, the proposed Adap-Net model can offer complementary opinions in computer-aided diagnosis (CAD) systems as a supportive tool for radiologists and physicians in the medical image interpretation, analysis, and diagnosis process.
引用
收藏
页码:75 / 88
页数:14
相关论文
共 55 条
[1]   Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network [J].
Anthimopoulos, Marios ;
Christodoulidis, Stergios ;
Ebner, Lukas ;
Christe, Andreas ;
Mougiakakou, Stavroula .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1207-1216
[2]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[3]  
Ayon Safial, 2019, International Journal of Information Engineering and Electronic Business, V11, P21, DOI DOI 10.5815/IJIEEB.2019.02.03
[4]   Imaging Heterogeneity in Lung Cancer: Techniques, Applications, and Challenges [J].
Bashir, Usman ;
Siddique, Muhammad Musib ;
Mclean, Emma ;
Goh, Vicky ;
Cook, Gary J. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2016, 207 (03) :534-543
[5]  
Bhavanishankar K., 2015, International Journal on Cybernetics Informatics, V4, P27, DOI DOI 10.5121/IJCI.2015.4103
[6]   Classification of lung cancer using ensemble-based feature selection and machine learning methods [J].
Cai, Zhihua ;
Xu, Dong ;
Zhang, Qing ;
Zhang, Jiexia ;
Ngai, Sai-Ming ;
Shao, Jianlin .
MOLECULAR BIOSYSTEMS, 2015, 11 (03) :791-800
[7]   Highly accurate model for prediction of lung nodule malignancy with CT scans [J].
Causey, Jason L. ;
Zhang, Junyu ;
Ma, Shiqian ;
Jiang, Bo ;
Qualls, Jake A. ;
Politte, David G. ;
Prior, Fred ;
Zhang, Shuzhong ;
Huang, Xiuzhen .
SCIENTIFIC REPORTS, 2018, 8
[8]   Radiomic features analysis in computed tomography images of lung nodule classification [J].
Chen, Chia-Hung ;
Chang, Chih-Kun ;
Tu, Chih-Yen ;
Liao, Wei-Chih ;
Wu, Bing-Ru ;
Chou, Kuei-Ting ;
Chiou, Yu-Rou ;
Yang, Shih-Neng ;
Zhang, Geoffrey ;
Huang, Tzung-Chi .
PLOS ONE, 2018, 13 (02)
[9]   A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre [J].
Cheung, Carol Y. ;
Xu, Dejiang ;
Cheng, Ching-Yu ;
Sabanayagam, Charumathi ;
Tham, Yih-Chung ;
Yu, Marco ;
Rim, Tyler Hyungtaek ;
Chai, Chew Yian ;
Gopinath, Bamini ;
Mitchell, Paul ;
Poulton, Richie ;
Moffitt, Terrie E. ;
Caspi, Avshalom ;
Yam, Jason C. ;
Tham, Clement C. ;
Jonas, Jost B. ;
Wang, Ya Xing ;
Song, Su Jeong ;
Burrell, Louise M. ;
Farouque, Omar ;
Li, Ling Jun ;
Tan, Gavin ;
Ting, Daniel S. W. ;
Hsu, Wynne ;
Lee, Mong Li ;
Wong, Tien Y. .
NATURE BIOMEDICAL ENGINEERING, 2021, 5 (06) :498-+
[10]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807