Research on Improved Particle Swarm Computational Intelligence Algorithm and Its Application to Multi-Objective Optimisation

被引:0
|
作者
Chen L. [1 ]
Xiong F. [1 ]
机构
[1] Geely University of China, Sichuan, Chengdu
关键词
Constrained optimization; Convergence factor model; Hybridization model; Multi-objective optimization; Particle swarm algorithm;
D O I
10.2478/amns-2024-1440
中图分类号
学科分类号
摘要
Due to the pervasive generalization challenges in optimization technology, there is a noticeable trend toward planning and diversifying optimization techniques. This paper focuses on particle swarm optimization algorithms, particularly their application in multi-objective optimization scenarios. Initially, the study examines basic particle swarm, standard particle swarm, and particle swarm algorithms with a shrinkage factor. Subsequently, an enhanced particle swarm optimization algorithm is proposed, incorporating a hybridization model and a convergence factor model tailored to the specific characteristics of particle swarm algorithms. This improved algorithm is then applied to multi-objective optimization problems, establishing a novel algorithm based on the fusion of the enhanced particle swarm approach with constrained optimization. Simulation experiments conducted on this model reveal significant findings. In low-dimensional settings, the algorithm achieves a 100% optimization success rate, marking an average improvement of 53.80%, 40.78%, and 24.76% over competing algorithms. Moreover, in multi-objective optimization simulation experiments, this algorithm generates 142 and 135 optimal solutions, outperforming traditional algorithms by 112 and 107 solutions, respectively. These results validate the efficiency and enhanced performance of the improved particle swarm-based multi-objective optimization algorithm, demonstrating its potential as an effective tool for addressing real-world optimization challenges. © 2024 Lifei Chen et al., published by Sciendo.
引用
收藏
相关论文
共 50 条
  • [41] Multi-objective particle swarm optimization algorithm based on dynamic crowding distance and its application
    Liu L.
    Zhang X.
    Xie L.
    Li M.
    Wen S.
    Lu Q.
    Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery, 2010, 41 (03): : 189 - 194
  • [42] Dynamic Multi-objective Optimisation Using Multi-guide Particle Swarm Optimisation
    Jocko, Pawel
    Ombuki-Berman, Beatrice M.
    Engelbrecht, Andries P.
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [43] Multi-Objective Generation Dispatch Using Particle Swarm Optimisation
    Rani, C.
    Kumar, M. Rajesh
    Pavan, K.
    INDIA INTERNATIONAL CONFERENCE ON POWER ELECTRONIC S, 2006, : 421 - 424
  • [44] An enhanced multi-objective particle swarm optimisation with Levy flight
    Lan, Hai-ying
    Xu, Gang
    Yang, Yu-qun
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2023, 17 (01) : 79 - 94
  • [45] Multi-Objective Particle Swarm Optimisation (PSO) for Feature Selection
    Xue, Bing
    Zhang, Mengjie
    Browne, Will N.
    PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2012, : 81 - 88
  • [46] Image Fusion based on an improved algorithm of Multi-objective Particle swarm Optimization
    Li, Juan
    Nan, Xu-Liang
    Bi, Si-Yuan
    Wu, Wei
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2013, 43 (SUPPL.1): : 477 - 480
  • [47] An Improved Multi-Objective Particle Swarm Optimization Algorithm Based on Angle Preference
    Ling, Qing-Hua
    Tang, Zhi-Hao
    Huang, Gan
    Han, Fei
    SYMMETRY-BASEL, 2022, 14 (12):
  • [48] Improved Multi-Objective Particle Swarm Optimization Algorithm for DNA Sequence Design
    Niu, Ying
    Zhou, Hangyu
    Wang, Shida
    Zhao, Kai
    Wang, Xiaoxiao
    Zhang, Xuncai
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2020, 15 (12) : 1450 - 1459
  • [49] Multi-objective Reactive Power Optimization Based on Improved Particle Swarm Algorithm
    Cui, Xue
    Gao, Jian
    Feng, Yunbin
    Zou, Chenlu
    Liu, Huanlei
    2017 3RD INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION (ESMA2017), VOLS 1-4, 2018, 108
  • [50] Multi-Objective Optimal Scheduling of Microgrids Based on Improved Particle Swarm Algorithm
    Guan, Zhong
    Wang, Hui
    Li, Zhi
    Luo, Xiaohu
    Yang, Xi
    Fang, Jugang
    Zhao, Qiang
    ENERGIES, 2024, 17 (07)