The effect of protonation on structural modification in layers

被引:0
作者
Borodin Y. [1 ]
Zadorozhnaya T. [1 ]
Ghyngazov S. [1 ]
机构
[1] Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk
来源
Materials Science Forum | 2019年 / 942卷
关键词
Protonation; Structural modification; Superlattice;
D O I
10.4028/www.scientific.net/MSF.942.21
中图分类号
学科分类号
摘要
The results on protonation in solutions and melts of salts and acids, as well as structural changes associated with the formation of nanocomposition structure of materials are discussed. It is demonstrated by structural methods that proton localization is invariant to the volume in the protonated layer and is accompanied by changes between oxygen distances, enlargement of the unit cell and transition to the rhombic phase. Having the maximum crystal-chemical activity, protons create the hexagonal lattice in accordance with the features of equipotential pictures of their nonequilibrium electrostatic fields. The increase in the integral intensity of reflexes observed on neutronograms of protonated LiNbO3 (102), (111), (113) is associated with the ordering of protons in the hexagonal oxygen sublattice of the initial phase. © 2019 Trans Tech Publications, Switzerland.
引用
收藏
页码:21 / 29
页数:8
相关论文
共 39 条
[31]  
Smyth D.M., , ISAF 86: Proc. 6 IEEE Int. Symp. Appl. Ferroelec, pp. 115-117, (1986)
[32]  
Rice C.E., Jackel I.L., Structural changes with compositionand temperature in rhombohedral Li<sub>1-x</sub>HxNbO<sub>3</sub>, Mater. Res. Bull., 19, 5, pp. 591-597, (1984)
[33]  
Goto N., Yip G.L., Characterization of proton-exchange and annealed LiNbO<sub>3</sub> waveguides with pyrophosphoric acid, Appl. Opt., 28, 1, pp. 60-65, (1989)
[34]  
Loni A., Keys R.W., de La Rue R.M., Et al., Optical Characterisation of Z-cut proton-exchanged LiNbO<sub>3</sub> wavegiudes fabricated using orthophosphoric and pyrophosphoric acid, IEE Proc. J., 6, pp. 297-300, (1989)
[35]  
Birelein J.D., Ferretti A., Gilliam Y., Fabrication and charaterization of optical wavegiud in KTiOPO<sub>4</sub>, Appl. Phys. Lett., 50, 18, pp. 1216-1218, (1987)
[36]  
Lori A., de La Rue R.M., Winfield I.M., Proton-exchanged lithium niobate planar-optical wavegiudes: Chemical and optical properties and room-temperature hydrogen isotropic exchange reactions, J. Appl. Phys., 61, 1, pp. 64-67, (1987)
[37]  
Buckman A.D., Montgelas R.A., Wavegiuding surface demage layer in LiTaO<sub>3</sub>, Appl. Opt., 20, 1, pp. 6-8, (1981)
[38]  
Sanford N.A., Robinson W.C., Secondary-ion mass spectroscopy characterization of proton-exchanged LiNbO<sub>3</sub> wavegiudes, Opt. Lett., 10, 4, pp. 190-192, (1985)
[39]  
Skinner I.M., Naden I.M., Weiss B.L., Et al., The modelling of lithium out diffusion in He<sup>+</sup> implanted optical waveguides in LiNbO<sub>3</sub>, Solid-State Electronics, 30, 1, pp. 85-88, (1987)