Viscoelasticity and dynamical gaps: Rigidity in crystallization and glass-forming liquids

被引:4
作者
Toledo-Marín J.Q. [1 ]
Naumis G.G. [1 ]
机构
[1] Departamento de Sistemas Complejos, Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 20-364, México, 01000, Distrito Federal
来源
Journal of Non-Crystalline Solids: X | 2019年 / 3卷
关键词
Relaxation; Rigidity; Viscoelasticity;
D O I
10.1016/j.nocx.2019.100030
中图分类号
学科分类号
摘要
Rigidity plays an important role on the relaxation properties of glass forming melts, yet it is usually determined from the average coordination number through the chemical composition. A discussion is presented on how viscoelasticity can be used as an alternative way to determine glass rigidity and to give clues about the relaxation processes. It is shown that the transverse current dynamical structure factor of dense glass and crystal forming fluids contain rich information about rigidity that can be related with the presence of a dynamical-gap for transversal vibrational-modes. Then, the number of floppy modes can be related with the dynamical gap size and with the liquid relaxation time. Furthermore, a dynamical average effective coordination number can be defined. Numerical simulations for hard-disks in a dense fluid phase are provided. A discussion is presented on the need to improve glass viscoelasticity models to describe consistently non-exponential stress and strain relaxation. © 2019
引用
收藏
相关论文
共 79 条
  • [1] Gupta P.K., Mauro J.C., Composition dependence of glass transition temperature and fragility. i. a topological model incorporating temperature-dependent constraints, J. Chem. Phys., 130, 9, (2009)
  • [2] Nascimento M.L.F., Fokin V.M., Zanotto E.D., Abyzov A.S., Dynamic processes in a silicate liquid from above melting to below the glass transition, J. Chem. Phys., 135, 19, (2011)
  • [3] Binder K., Kob W., Glassy Materials and Disordered Solids: An Introduction to their Statistical Mechanics, (2011)
  • [4] Berthier L., Biroli G., Theoretical perspective on the glass transition and amorphous materials, Rev. Mod. Phys., 83, 2, (2011)
  • [5] Wolynes P.G., Lubchenko V., Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications, (2012)
  • [6] Naumis G., Phillips J., Bifurcation of stretched exponential relaxation in microscopically homogeneous glasses, J. Non-Cryst. Solids, 358, 5, pp. 893-897, (2012)
  • [7] Gupta P.K., Cassar D.R., Zanotto E.D., Role of dynamic heterogeneities in crystal nucleation kinetics in an oxide supercooled liquid, J. Chem. Phys., 145, 21, (2016)
  • [8] Zanotto E.D., Cassar D.R., The race within supercooled liquidsrelaxation versus crystallization, J. Chem. Phys., 149, 2, (2018)
  • [9] Pedersen U.R., Costigliola L., Bailey N.P., Schroder T.B., Dyre J.C., Thermodynamics of freezing and melting, Nat. Commun., 7, (2016)
  • [10] Albert S., Bauer T., Michl M., Biroli G., Bouchaud J.-P., Loidl A., Lunkenheimer P., Tourbot R., Wiertel-Gasquet C., Ladieu F., Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers, Science, 352, 6291, pp. 1308-1311, (2016)