Optical and scintillation properties of Pr3+-doped (La, Y)2Si2O7 single crystals

被引:0
作者
Abe Y. [1 ,2 ]
Horiai T. [2 ,3 ]
Pejchal J. [4 ]
Yokota Y. [2 ,3 ]
Yoshino M. [2 ,3 ]
Murakami R. [2 ]
Hanada T. [2 ]
Yamaji A. [2 ,3 ]
Sato H. [2 ,3 ]
Ohashi Y. [2 ,3 ]
Kurosawa S. [2 ,3 ,5 ]
Kamada K. [2 ,3 ]
Yoshikawa A. [2 ,3 ]
Nikl M. [4 ]
机构
[1] Department of Materials Science and Engineering, Graduate School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba-ku, Miyagi, Sendai
[2] Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Miyagi, Sendai
[3] New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aramaki Aza Aoba, Aoba-ku, Miyagi, Sendai
[4] Institute of Physics of the Czech Academy of Sciences, Cukrovarnicka 10, Prague
[5] Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Osaka, Suita
基金
日本学术振兴会;
关键词
Micro-pulling-down method; Pyrosilicate; Scintillator; Single crystal;
D O I
10.1016/j.omx.2024.100318
中图分类号
学科分类号
摘要
Pr-doped scintillators are attracting attention because of their potential applications in medical devices. In this study, we focused on Pr-doped (La, Y)2Si2O7 scintillators to grow single crystals by the micro-pulling-down method and to evaluate their optical and scintillation properties. From the powder XRD results, the crystal structure and the space group were identified to be monoclinic and P21/n, respectively. The results of optical and scintillation characterization show that the luminescence from the Pr3+ 5d1–4f transition increases with increasing Pr3+ concentration. The maximum light yield was also obtained for the sample with the highest Pr3+ concentration. The Pr-doped (La, Y)2Si2O7 single crystal shows promising properties for application in radiation detection. © 2024 The Authors
引用
收藏
相关论文
共 29 条
[1]  
Nikl M., Scintillation detectors for x-rays, Meas. Sci. Technol., 17, pp. R37-R54, (2006)
[2]  
van Eijk C.W.E., Radiation detector developments in medical applications: inorganic scintillators in positron emission tomography, Radiat. Protect. Dosim., 129, 28, pp. 13-21
[3]  
Humm J.L., Rosenfeld A., Del Guerra A., From PET detectors to PET scanners, Eur. J. Nucl. Med. Mol. Imag., 30, pp. 1574-1597, (2003)
[4]  
Laval M., Moszynski M., Allemand R., Cormoreche E., Guinet P., Odru R., Vacher J., Barium fluoride - inorganic scintillator for subnanosecond timing, Nucl. Instrum. Methods Phys. Res., 206, pp. 169-176, (1983)
[5]  
Zhu W., Ma W., Su Y., Chen Z., Chen X., Ma Y., Bai L., Xiao W., Liu T., Zhu H., Liu X., Liu H., Liu X., Yang Y., Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators, Light Sci. Appl., 9, (2020)
[6]  
Yanagida T., Fujimoto Y., Yagi H., Yanagitani T., Optical and scintillation properties of transparent ceramic Yb:Lu<sub>2</sub>O<sub>3</sub> with different Yb concentrations, Opt. Mater., 36, pp. 1044-1048, (2014)
[7]  
Melcher C.L., Schweitzer J.S., Peterson C.A., Manente R.A., Suzuki H., Crystal growth and scintillation properties of the rare earth orthosilicates, Inorganic Scintillators and their Applications, pp. 309-315, (1996)
[8]  
Pauwels D., Le Masson N., Viana B., Kahn-Harari A., van Loef E.V.D., Dorenbos P., van Eijk C.W.E., Member, ieee, A novel inorganic scintillator: Lu<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>:Ce<sup>3+</sup> (lps), IEEE Trans. Nucl. Sci., 47, pp. 1787-1790, (2000)
[9]  
Kawamura S., Kaneko J.H., Higuchi M., Yamaguchi T., Haruna J., Yagi Y., Susa K., Fujita F., Homma A., Nishiyama S., Kurashige K., Ishibashi H., Furusaka M., Floating zone growth and scintillation characteristics of cerium-doped gadolinium pyrosilicate single crystals, IEEE Trans. Nucl. Sci., 54, pp. 1383-1386, (2007)
[10]  
Autrata R., Schauer P., Kvapil J., Phys E J., A single crystal of YAG-new fast scintillator in SEM, J. Phys., 11, pp. 707-708, (1978)