A deep learning paradigm for medical imaging data

被引:1
作者
Chen, Jinyang [1 ]
Park, Cheolwoo [2 ]
机构
[1] Univ Georgia, Dept Stat, Athens, GA 30602 USA
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Data augmentation; Prediction uncertainty; Deep learning; Medical imaging data; HARMONIZATION; FMRI;
D O I
10.1016/j.eswa.2024.124480
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel deep learning framework to address several challenges in medical imaging analysis. Especially for functional magnetic resonance imaging (fMRI) data, we develop a statistical sampling algorithm to augment small data for deep learning modeling. Also, the ComBat harmonization is utilized for multi-source batch effect correction. Finally, we implement the prediction uncertainty in deep learning through a dropout approximation of the deep Gaussian process. The proposed approach offers effective statistical tools to solve persistent problems in deep learning modeling for medical imaging data. To assess the performance of the proposed approach and demonstrate its effectiveness for various types of data, we apply it to autism fMRI and Pneumonia imaging datasets.
引用
收藏
页数:9
相关论文
共 46 条
[1]  
Abdollahi B., 2020, Deep learners and deep learner descriptors for medical applications, P167, DOI DOI 10.1007/978-3-030-42750-4_6
[2]   Machine learning for neuroirnaging with scikit-learn [J].
Abraham, Alexandre ;
Pedregosa, Fabian ;
Eickenberg, Michael ;
Gervais, Philippe ;
Mueller, Andreas ;
Kossaifi, Jean ;
Gramfort, Alexandre ;
Thirion, Bertrand ;
Varoquaux, Gael .
FRONTIERS IN NEUROINFORMATICS, 2014, 8
[3]  
[Anonymous], 2013, Neuroinformatics
[4]  
Bijsterbosch Janine, 2017, An Introduction to Resting State FMRI Functional Connectivity
[5]   A computational framework for the detection of subcortical brain dysmaturation in neonatal MRI using 3D Convolutional Neural Networks [J].
Ceschin, Rafael ;
Zahner, Alexandria ;
Reynolds, William ;
Gaesser, Jenna ;
Zuccoli, Giulio ;
Lo, Cecilia W. ;
Gopalakrishnan, Vanathi ;
Panigrahy, Ashok .
NEUROIMAGE, 2018, 178 :183-197
[6]   IMPROVED CENTRAL LIMIT THEOREM AND BOOTSTRAP APPROXIMATIONS IN HIGH DIMENSIONS [J].
Chernozhuokov, Victor ;
Chetverikov, Denis ;
Kato, Kengo ;
Koike, Yuta .
ANNALS OF STATISTICS, 2022, 50 (05) :2562-2586
[7]  
Cun YL., 1990, Advances in Neural Information Processing Systems, P396
[8]  
Dixon Philip M., 1993, P290
[9]   Prediction of Individual Brain Maturity Using fMRI [J].
Dosenbach, Nico U. F. ;
Nardos, Binyam ;
Cohen, Alexander L. ;
Fair, Damien A. ;
Power, Jonathan D. ;
Church, Jessica A. ;
Nelson, Steven M. ;
Wig, Gagan S. ;
Vogel, Alecia C. ;
Lessov-Schlaggar, Christina N. ;
Barnes, Kelly Anne ;
Dubis, Joseph W. ;
Feczko, Eric ;
Coalson, Rebecca S. ;
Pruett, John R., Jr. ;
Barch, Deanna M. ;
Petersen, Steven E. ;
Schlaggar, Bradley L. .
SCIENCE, 2010, 329 (5997) :1358-1361
[10]  
Efron B, 1982, JACKKNIFE BOOTSTRAP