INFLUENCE OF PLY ORIENTATION ON INTERLAMINAR FRACTURE TOUGHNESS OF CARBON/EPOXY COMPOSITES

被引:0
|
作者
Prodduturi A.K. [1 ]
Pinninti R.R. [2 ]
Gupta K.S. [3 ]
机构
[1] Guru Nanak Institutions Technical Campus, Hyderabad, Ibrahimpatnam
[2] Chaitanya Bharati Institute of Technology, Hyderabad
[3] JNTU, College of Engineering, Hyderabad
关键词
carbon/epoxy; delamination; fracture toughness; mode I fracture; quasi-static condition;
D O I
10.1615/COMPMECHCOMPUTAPPLINTJ.2024051155
中图分类号
学科分类号
摘要
Delamination is a concern for the structural integrity of fiber-reinforced polymer composite structures. The decisive material parameter for delamination is fracture toughness (GIc). The main objective of this study was to investigate the in-plane, quasi-static fracture toughness (both initiation and propagation) of two laminate composites. Both composites contain carbon fibers in an epoxy matrix. The tests were performed using double cantilever beam specimens with different ply orientations according to ASTM standards. The effect of ply orientation was evaluated using data reduction methods to obtain fracture toughness. The experiments revealed that the ply sequence changed the crack propagation mechanism, increasing the initiation and propagation fracture toughness values for 90/90 layup during mode I interlaminar tests, by 80% and 69%, respectively. In addition, the mode I fracture toughness increased by 40% after 50 mm crack extension. © 2024 Begell House Inc.. All rights reserved.
引用
收藏
页码:25 / 34
页数:9
相关论文
共 50 条
  • [11] Effect of fibre orientation on mode-I interlaminar fracture toughness of glass epoxy composites
    Shetty, MR
    Kumar, KRV
    Sudhir, S
    Raghu, P
    Madhuranath, AD
    Rao, RMVG
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2000, 19 (08) : 606 - 620
  • [12] Improving the interlaminar fracture toughness of carbon fiber/epoxy composites using clustered microcapsules
    Zhao, Guoqi
    Wang, Ben
    Hou, Haoming
    Hao, Wenfeng
    Luo, Ying
    POLYMER TESTING, 2020, 87
  • [13] Dynamic mode II interlaminar fracture toughness of electrically modified carbon/epoxy composites
    Shamchi, Sahand P.
    de Moura, Marcelo F. S. F.
    Zhao, Zhongjie
    Yi, Xiaosu
    Moreira, Pedro M. G. P.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2022, 159
  • [14] Impact of process induced residual stresses on interlaminar fracture toughness in carbon epoxy composites
    Umarfarooq, M. A.
    Gouda, P. S. Shivakumar
    Kumar, G. B. Veeresh
    Banapurmath, N. R.
    Edacherian, Abhilash
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2019, 127
  • [15] Roles of interfaces between carbon fibers and epoxy matrix on interlaminar fracture toughness of composites
    Park, Soo-Jin
    Seo, Min-Kang
    Lee, Jae-Rock
    COMPOSITE INTERFACES, 2006, 13 (2-3) : 249 - 267
  • [16] Interlaminar and intralaminar fracture toughness of uniaxial continuous and discontinuous carbon fibre epoxy composites
    Truss, RW
    Hine, PJ
    Duckett, RA
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 1997, 28 (07) : 627 - 636
  • [17] Effect of Temperature on Interlaminar Fracture Toughness of Filament-Wound Carbon/Epoxy Composites
    Im, JaeMoon
    Shin, KwangBok
    Hwang, Taekyung
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2015, 39 (05) : 491 - 497
  • [18] A Study of the Interlaminar Fracture Toughness of Unidirectional Flax/Epoxy Composites
    Saadati, Yousef
    Chatelain, Jean-Francois
    Lebrun, Gilbert
    Beauchamp, Yves
    Bocher, Philippe
    Vanderesse, Nicolas
    JOURNAL OF COMPOSITES SCIENCE, 2020, 4 (02):
  • [19] Dependence of the interlaminar fracture toughness of E-Glass/Polyester woven fabric composites laminates on ply orientation
    Triki, E.
    Zouari, B.
    Dammak, F.
    ENGINEERING FRACTURE MECHANICS, 2016, 159 : 63 - 78
  • [20] Influence of yarn bundle orientation and areal density on the interlaminar fracture toughness of ENF composites
    Salamat-Talab, Mazaher
    Kazemi, Hossein
    Mahdavi, Mohsen
    ENGINEERING FRACTURE MECHANICS, 2025, 315