A distributed framework for distributed denial-of-service attack detection in internet of things environments using deep learning

被引:0
|
作者
Silas W.A. [1 ]
Nderu L. [1 ]
Ndirangu D. [1 ]
机构
[1] Jomo Kenyatta University of Agriculture and Technology, United States International University Africa, USIU Road, Off Thika Road
关键词
artificial intelligence; BiLSTM; CNNs; convolutional neural networks; DDoS; deep learning; distributed denial-of-service; internet of things; IoT; machine learning;
D O I
10.1504/IJWET.2024.138107
中图分类号
学科分类号
摘要
Internet of things (IoT) networks dominate industries, homes, organisations, and other aspects of life owing to their automation capabilities. However, IoT networks are vulnerable to attacks, especially distributed denial-of-service (DDoS) attacks, as they tend to have low computational capabilities and are highly diverse. While current research shows the potential of utilising deep learning methods to detect DDoS attacks, there is a lack of a framework that can be used to deploy an effective deep learning algorithm to detect DDoS attacks in heterogeneous IoT environments. Accordingly, this paper developed a DDoS detection framework based on the CNN-BiLSTM model, which can be deployed in a distributed network and includes adequate pre-processing. Simulations were also done to demonstrate the application of the framework and its effectiveness. Copyright © 2024 Inderscience Enterprises Ltd.
引用
收藏
页码:67 / 87
页数:20
相关论文
共 50 条
  • [1] Distributed Denial of Service Attack Detection for the Internet of Things Using Hybrid Deep Learning Model
    Ahmim, Ahmed
    Maazouzi, Faiz
    Ahmim, Marwa
    Namane, Sarra
    Dhaou, Imed Ben
    IEEE ACCESS, 2023, 11 : 119862 - 119875
  • [2] Deep learning in distributed denial-of-service attacks detection method for Internet of Things networks
    Aswad, Firas Mohammed
    Ahmed, Ali Mohammed Saleh
    Alhammadi, Nafea Ali Majeed
    Khalaf, Bashar Ahmad
    Mostafa, Salama A.
    JOURNAL OF INTELLIGENT SYSTEMS, 2023, 32 (01)
  • [3] Multilevel Deep Neural Network Approach for Enhanced Distributed Denial-of-Service Attack Detection and Classification in Software-Defined Internet of Things Networks
    Abid, Yawar Abbas
    Wu, Jinsong
    Xu, Guangquan
    Fu, Shihui
    Waqas, Muhammad
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (14): : 24715 - 24725
  • [4] Refined LSTM Based Intrusion Detection for Denial-of-Service Attack in Internet of Things
    Alimi, Kuburat Oyeranti Adefemi
    Ouahada, Khmaies
    Abu-Mahfouz, Adnan M.
    Rimer, Suvendi
    Alimi, Oyeniyi Akeem
    JOURNAL OF SENSOR AND ACTUATOR NETWORKS, 2022, 11 (03)
  • [5] Distributed attack detection scheme using deep learning approach for Internet of Things
    Diro, Abebe Abeshu
    Chilamkurti, Naveen
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 82 : 761 - 768
  • [6] Distributed denial-of-service (DDOS) attack detection using supervised machine learning algorithms
    S. Abiramasundari
    V. Ramaswamy
    Scientific Reports, 15 (1)
  • [7] Statistical based distributed denial of service attack detection research in internet of things
    Chen H.-S.
    Chen J.-J.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2020, 50 (05): : 1894 - 1904
  • [8] Survey on distributed denial of service attack detection using deep learning: A review
    Jassem, Manal Dawood
    Abdulrahman, Amer Abdulmajeed
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 753 - 762
  • [9] Response to distributed denial-of-service attack using active technology
    Kim, HJ
    Na, JC
    Sohn, SW
    Proceedings of the Eighth IASTED International Conference on Internet and Multimedia Systems and Applications, 2004, : 244 - 248
  • [10] Distributed Denial of Service Attack Detection in Network Traffic Using Deep Learning Algorithm
    Ramzan, Mahrukh
    Shoaib, Muhammad
    Altaf, Ayesha
    Arshad, Shazia
    Iqbal, Faiza
    Castilla, Angel Kuc
    Ashraf, Imran
    SENSORS, 2023, 23 (20)