Heterostructural Sn/SnO2 microcube powders coated by a nitrogen-doped carbon layer as good-performance anode materials for lithium ion batteries

被引:0
|
作者
Li, Rui [1 ]
Nie, Shuqing [1 ]
Miao, Chang [1 ]
Xin, Yu [1 ]
Mou, Houyi [1 ]
Xu, Guanli [1 ]
Xiao, Wei [1 ]
机构
[1] College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou,434023, China
基金
中国国家自然科学基金;
关键词
Carbonization process - Cycling stability - Discharge specific capacity - Electrochemical performance - Lithium storage capacity - Nitrogen-doped carbons - Rate capabilities - Transmission paths;
D O I
暂无
中图分类号
学科分类号
摘要
The nitrogen-doped carbon (NC) coating encapsulating heterostructural Sn/SnO2 microcube powders (Sn/SnO2@NC) are successfully fabricated through hydrothermal, polymerization of hydrogel, and carbonization processes, in which the SnO precursor powders exhibit regular microcube structure and uniform size distribution in the presence of optimized N2H4·H2O (3.0 mL of 1.0 mol/L). Interestingly, the precursor powders are easily subjected to a disproportionated reaction to yield the desirable heterostructural Sn/SnO2@NC microcube powders after being calcined at 600 °C in N2 atmosphere in the presence of home-made hydrogel. The coin cells assembled with the Sn/SnO2@NC electrode present a high initial discharge specific capacity (1058 mAh g−1 at 100 mA g−1), improved rate capability (an excellent DLi+ value of 2.82 × 10-15 cm2 s−1) and enhanced cycling stability (a reversible discharge specific capacity of 486.5 mAh g−1 after 100 cycles at 100 mA g−1). The enhanced electrochemical performance can be partly ascribed to the heterostructural microcube that can accelerate the transfer rate of lithium ions by shortening the transmission paths, and be partly to the NC coating that can accommodate the volume effect and contribute to partial lithium storage capacity. Therefore, the strategy may be able to extend the fabrication of Sn/SnO2 heterostructural microcube powders and further application as promising anode materials in lithium ion batteries. © 2021 Elsevier Inc.
引用
收藏
页码:1042 / 1054
相关论文
共 50 条
  • [21] Porous Hierarchical Nitrogen-doped Carbon Coated ZnFe2O4 Composites as High Performance Anode Materials for Lithium Ion Batteries
    Yue, Hongyun
    Wang, Qiuxian
    Shi, Zhenpu
    Ma, Chao
    Ding, Yanmin
    Huo, Ningning
    Zhang, Jun
    Yang, Shuting
    ELECTROCHIMICA ACTA, 2015, 180 : 622 - 628
  • [22] Carbon-coated mesoporous SnO2 nanospheres as anode material for lithium ion batteries
    Wang, Fei
    Song, Xiaoping
    Yao, Gang
    Zhao, Mingshu
    Liu, Rui
    Xu, Minwei
    Sun, Zhanbo
    SCRIPTA MATERIALIA, 2012, 66 (08) : 562 - 565
  • [23] Asphalt-Decomposed Carbon-Coated SnO2 as an Anode for Lithium Ion Batteries
    Guodong Liang
    Xiaogang Sun
    Jiamei Lai
    Chengcheng Wei
    Yapan Huang
    Hao Hu
    Jingyi Zou
    Yuhao Xu
    Journal of Electronic Materials, 2019, 48 : 3324 - 3329
  • [24] Asphalt-Decomposed Carbon-Coated SnO2 as an Anode for Lithium Ion Batteries
    Liang, Guodong
    Sun, Xiaogang
    Lai, Jiamei
    Wei, Chengcheng
    Huang, Yapan
    Hu, Hao
    Zou, Jingyi
    Xu, Yuhao
    JOURNAL OF ELECTRONIC MATERIALS, 2019, 48 (05) : 3324 - 3329
  • [25] TiO2-coated SnO2 hollow spheres as anode materials for lithium ion batteries
    YI Jina
    Rare Metals, 2011, 30 (06) : 589 - 594
  • [26] TiO2-coated SnO2 hollow spheres as anode materials for lithium ion batteries
    Yi Jin
    Li Xiaoping
    Hu Shejun
    Li Weishan
    Zeng Ronghua
    Fu Zhao
    Chen Lang
    RARE METALS, 2011, 30 (06) : 589 - 594
  • [27] Preparation of Spherical Sn/SnO2/Porous Carbon Composite Materials as Anode Material for Lithium-Ion Batteries
    Hong-Qiang Wang
    Xiao-Hui Zhang
    Jing-Bo Wen
    You-Guo Huang
    Fei-Yan Lai
    Qing-Yu Li
    Journal of Materials Engineering and Performance, 2015, 24 : 1856 - 1864
  • [28] TiO2-coated SnO2 hollow spheres as anode materials for lithium ion batteries
    Jin Yi
    Xiaoping Li
    Shejun Hu
    Weishan Li
    Ronghua Zeng
    Zhao Fu
    Lang Chen
    Rare Metals, 2011, 30 : 589 - 594
  • [29] Preparation of Spherical Sn/SnO2/Porous Carbon Composite Materials as Anode Material for Lithium-Ion Batteries
    Wang, Hong-Qiang
    Zhang, Xiao-Hui
    Wen, Jing-Bo
    Huang, You-Guo
    Lai, Fei-Yan
    Li, Qing-Yu
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2015, 24 (05) : 1856 - 1864
  • [30] Nitrogen-doped carbon-coated cotton-derived carbon fibers as high-performance anode materials for lithium-ion batteries
    Xinglian Liu
    Yanshuang Meng
    Ruinian Li
    Mengqi Du
    Fuliang Zhu
    Yue Zhang
    Ionics, 2019, 25 : 5799 - 5807