Second-order, positive, and unconditional energy dissipative scheme for modified Poisson-Nernst-Planck equations

被引:4
作者
Ding, Jie [1 ]
Zhou, Shenggao [2 ,3 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Jiangsu, Peoples R China
[2] Shanghai Jiao Tong Univ, CMA Shanghai, Sch Math Sci, MOE LSC, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, Shanghai Ctr Appl Math, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Modified Poisson-Nernst-Planck equations; Original energy dissipation; Second order in time; Positivity; FINITE-VOLUME SCHEME; MULTISLOPE MUSCL METHOD; DIFFUSION EQUATIONS; ASYMPTOTIC-BEHAVIOR; DIFFERENCE SCHEME; MODEL; FLOW;
D O I
10.1016/j.jcp.2024.113094
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
First-order energy dissipative schemes in time are available in literature for the Poisson- Nernst-Planck (PNP) equations, but second-order ones are still in lack. This work proposes novel second-order discretization in time and finite volume discretization in space for modified PNP equations that incorporate effects arising from ionic steric interactions and dielectric inhomogeneity. A multislope method on unstructured meshes is proposed to reconstruct positive, accurate approximations of mobilities on faces of control volumes. Numerical analysis proves that the proposed numerical schemes are able to unconditionally ensure the existence of positive numerical solutions, original energy dissipation, mass conservation, and preservation of steady states at discrete level. Extensive numerical simulations are conducted to demonstrate numerical accuracy and performance in preserving properties of physical significance. Applications in ion permeation through a 3D nanopore show that the modified PNP model, equipped with the proposed schemes, has promising applications in the investigation of ion selectivity and rectification. The proposed second-order discretization can be extended to design temporal second-order schemes with original energy dissipation for a type of gradient flow problems with entropy.
引用
收藏
页数:18
相关论文
共 47 条
[1]  
Bailo R, 2020, COMMUN MATH SCI, V18, P1259
[2]   Diffuse-charge dynamics in electrochemical systems [J].
Bazant, Martin Z. ;
Thornton, Katsuyo ;
Ajdari, Armand .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (2 1) :021506-1
[3]   STUDY OF A FINITE VOLUME SCHEME FOR THE DRIFT-DIFFUSION SYSTEM. ASYMPTOTIC BEHAVIOR IN THE QUASI-NEUTRAL LIMIT [J].
Bessemoulin-Chatard, M. ;
Chainais-Hillairet, C. ;
Vignal, M. -H. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (04) :1666-1691
[4]   A FINITE VOLUME SCHEME FOR NONLINEAR DEGENERATE PARABOLIC EQUATIONS [J].
Bessemoulin-Chatard, Marianne ;
Filbet, Francis .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (05) :B559-B583
[5]   A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme [J].
Bessemoulin-Chatard, Marianne .
NUMERISCHE MATHEMATIK, 2012, 121 (04) :637-670
[6]   Chain conformation of polymer melts with associating groups [J].
Carrillo, Jan-Michael Y. ;
Chen, Wei-Ren ;
Wang, Zhe ;
Sumpter, Bobby G. ;
Wang, Yangyang .
JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (03)
[7]   A Finite-Volume Method for Nonlinear Nonlocal Equations with a Gradient Flow Structure [J].
Carrillo, Jose A. ;
Chertock, Alina ;
Huang, Yanghong .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2015, 17 (01) :233-258
[8]   Finite volume approximation for degenerate drift-diffusion system in several space dimensions [J].
Chainais-Hillairet, C ;
Peng, YJ .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (03) :461-481
[9]   Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis [J].
Chainais-Hillairet, C ;
Liu, JG ;
Peng, YJ .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (02) :319-338
[10]   Asymptotic behaviour of a finite-volume scheme for the transient drift-diffusion model [J].
Chainais-Hillairet, Claire ;
Filbet, Francis .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2007, 27 (04) :689-716