Krylov subspace method for nonlinear dynamical systems with random noise

被引:0
|
作者
Hashimoto, Yuka [1 ,2 ]
Ishikawa, Isao [3 ,4 ]
Ikeda, Masahiro [4 ,5 ]
Matsuo, Yoichi [1 ]
Kawahara, Yoshinobu [4 ,6 ]
机构
[1] NTT Network Technology Laboratories, NTT Corporation, 3-9-11, Midori-cho, Musashinoshi, Tokyo,180-8585, Japan
[2] Graduate School of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku, Yokohama, Kanagawa,223-8522, Japan
[3] Faculty of Science, Ehime University, 2-5, Bunkyo-cho, Matsuyama, Ehime,790-8577, Japan
[4] Center for Advanced Intelligence Project, RIKEN, 1-4-1, Nihonbashi, Chuo-ku, Tokyo,103-0027, Japan
[5] Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku, Yokohama, Kanagawa,223-8522, Japan
[6] Institute of Mathematics for Industry, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka,819-0395, Japan
关键词
Data transfer - Dynamical systems - Anomaly detection;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Krylov Subspace Method for Nonlinear Dynamical Systems with Random Noise
    Hashimoto, Yuka
    Ishikawa, Isao
    Ikeda, Masahiro
    Matsuo, Yoichi
    Kawahara, Yoshinobu
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [2] Krylov Subspace Methods in Dynamical Sampling
    Akram Aldroubi
    Ilya Krishtal
    Sampling Theory in Signal and Image Processing, 2016, 15 (1): : 9 - 20
  • [3] A Krylov subspace method for covariance approximation and simulation of random processes and fields
    Schneider, MK
    Willsky, AS
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2003, 14 (04) : 295 - 318
  • [4] A Krylov Subspace Method for Covariance Approximation and Simulation of Random Processes and Fields
    Michael K. Schneider
    Alan S. Willsky
    Multidimensional Systems and Signal Processing, 2003, 14 : 295 - 318
  • [5] Krylov subspace model order reduction of linear dynamical systems with quadratic output
    Bu, Yan-Ping
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2025, 47 (05) : 827 - 838
  • [6] A Computational Global Tangential Krylov Subspace Method for Model Reduction of Large-Scale MIMO Dynamical Systems
    A. H. Bentbib
    K. Jbilou
    Y. Kaouane
    Journal of Scientific Computing, 2018, 75 : 1614 - 1632
  • [7] A Computational Global Tangential Krylov Subspace Method for Model Reduction of Large-Scale MIMO Dynamical Systems
    Bentbib, A. H.
    Jbilou, K.
    Kaouane, Y.
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (03) : 1614 - 1632
  • [8] Krylov subspace accelerated inexact Newton method for linear and nonlinear equations
    Harrison, RJ
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2004, 25 (03) : 328 - 334
  • [9] Noise-correlation-time-mediated localization in random nonlinear dynamical systems
    Cabrera, JL
    Gorronogoitia, J
    de la Rubia, FJ
    PHYSICAL REVIEW LETTERS, 1999, 82 (14) : 2816 - 2819
  • [10] Noise-correlation-time-mediated localization in random nonlinear dynamical systems
    Cabrera, Juan L.
    Gorronogoitia, J.
    de la Rubia, F.J.
    Physical Review Letters, 82 (14):