Runge-kutta exponential time differencing scheme for incorporating graphene dispersion in the FDTD simulations

被引:0
作者
Ramadan O. [1 ]
机构
[1] Computer Engineering Department, Eastern Mediterranean University, via Mersin 10, Famagusta
来源
Progress in Electromagnetics Research Letters | 2019年 / 84卷
关键词
Dispersions - Graphene - Runge Kutta methods;
D O I
10.2528/pierl19012904
中图分类号
学科分类号
摘要
In this paper, the Runge-Kutta exponential time differencing (RK-ETD) scheme is used for incorporating Graphene dispersion in the finite difference time domain (FDTD) simulations. The Graphene dispersion is described in the gigahertz and terahertz frequency regimes by Drude model, and the stability of the implementation is studied by means of the von Neumann method combined with the Routh-Hurwitz criterion. It is shown that the presented implementation retains the standard nondispersive FDTD time step stability constraint. In addition, the RK-ETD scheme is used for the FDTD implementation of the complex-frequency shifted perfectly matched layer (CFS-PML) to truncated open region simulation domains. A numerical example is included to validate both the stability and accuracy of the given implementation. © 2019, Electromagnetics Academy. All rights reserved.
引用
收藏
页码:15 / 21
页数:6
相关论文
共 12 条
[1]  
Geim K., Novoselov K.S., The rise of Graphene, Nat. Mater., 6, 3, pp. 183-191, (2007)
[2]  
Novoselov K.S., Falko V.I., Colombo L., Gellert P.R., Schwab M.G., Kim K., A roadmap for Graphene, Nature, 490, pp. 192-200, (2012)
[3]  
Taflove A., Hangess S., Computational Electrodynamics: The Finite-Difference Time-Domain Method, (2005)
[4]  
Bouzianas D., Kantartzis N., Antonopoulos S., Tsiboukis T., Optimal modeling of infinite Graphene sheets via a class of generalized FDTD schemes, IEEE Trans. Magn., 48, 2, pp. 379-382, (2012)
[5]  
Bouzianas G.D., Kantartzis N.V., Yioultsis T.V., Tsiboukis T., Consistent study of Graphene structures through the direct incorporation of surface conductivity, IEEE Trans. Magn., 50, 2, (2014)
[6]  
Papadimopoulos A.N., Amanatiadis S.A., Kantartzis N.V., Rekanos I.T., Zygiridis T.T., Tsiboukis T.D., A convolutional PML scheme for the efficient modeling of Graphene structures through the ADE-FDTD technique, IEEE Trans. Magn., 53, 6, (2017)
[7]  
Sounas L., Caloz C., Gyrotropy and nonreciprocity of Graphene for microwave applications dimitrios, IEEE Trans. Microw. Theory Tech., 60, 4, pp. 901-914, (2012)
[8]  
Young J.L., Kittichartphayak A., Kwok Y.M., Sullivan D., On the dispersion errors related to (FD)2TD type schemes, IEEE Trans. Microw. Theory Tech., 43, 8, pp. 1902-1909, (1995)
[9]  
Cox S.M., Matthews P.C., Exponential time differencing for stiff systems, J. Comput. Phys., 176, pp. 430-455, (2002)
[10]  
Pereda J.A., Vielva L.A., Vegas A., Prieto A., Analyzing the stability of the FDTD technique by combining the Von Neumann method with the Routh-Hurwitz criterion, IEEE Trans. Microw. Theory Tech., 49, 2, pp. 377-381, (2001)