Iron fertilization-induced deoxygenation of eastern equatorial Pacific Ocean intermediate waters during the Paleocene-Eocene thermal maximum

被引:6
作者
Jiang, Xiaodong [1 ,2 ]
Zhao, Xiangyu [3 ]
Sun, Xiaoming [4 ]
Roberts, Andrew P. [5 ]
Sluijs, Appy [6 ]
Chou, Yu-Min [2 ]
Yao, Weiqi [2 ]
Xing, Jieqi [7 ]
Zhang, Weijie [2 ]
Liu, Qingsong [2 ]
机构
[1] Guangdong Univ Technol, Sch Environm Sci & Engn, Guangzhou 510006, Peoples R China
[2] Southern Univ Sci & Technol, Dept Ocean Sci & Engn, Shenzhen 518055, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Oceanog, Shanghai 200030, Peoples R China
[4] Sun Yat Sen Univ, Sch Marine Sci, Zhuhai 519080, Peoples R China
[5] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT 0200, Australia
[6] Univ Utrecht, Dept Earth Sci, NL-3584 CB Utrecht, Netherlands
[7] Chinese Acad Sci, Guangzhou Inst Geochem, Guangzhou 510640, Peoples R China
基金
欧洲研究理事会; 中国国家自然科学基金; 澳大利亚研究理事会; 国家重点研发计划;
关键词
ORGANIC-CARBON FLUX; SURFACE-TEMPERATURE; PRODUCTIVITY; OXYGENATION; PETM; RISE;
D O I
10.1130/G51770.1
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The Paleocene-Eocene thermal maximum (PETM), a transient period of global warming, is considered to be an important analog for future greenhouse conditions. It was accompanied by a significant carbon cycle perturbation. Although ocean deoxygenation across the PETM is reported widely, its mechanism in the open ocean remains uncertain. Here, we present magnetic and geochemical analyses of sediments from the eastern equatorial Pacific Ocean. We found that iron fertilization during the PETM by eolian dust and volcanic eruptions fueled eastern equatorial Pacific Ocean productivity. This process led to increased organic matter degradation and oxygen consumption in intermediate waters, leading to deoxygenation. Our findings suggest that iron fertilization could be an important driver of open-ocean oxygen loss, as a side effect of global warming.
引用
收藏
页码:276 / 281
页数:6
相关论文
共 40 条
[1]   Mechanisms of PETM global change constrained by a new record from central Utah [J].
Bowen, Gabriel J. ;
Bowen, Brenda Beitler .
GEOLOGY, 2008, 36 (05) :379-382
[2]  
Bralower TJ, 1997, GEOLOGY, V25, P963, DOI 10.1130/0091-7613(1997)025<0963:HRROTL>2.3.CO
[3]  
2
[4]   Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum [J].
Carmichael, Matthew J. ;
Inglis, Gordon N. ;
Badger, Marcus P. S. ;
Naafs, B. David A. ;
Behrooz, Leila ;
Remmelzwaal, Serginio ;
Monteiro, Fanny M. ;
Rohrssen, Megan ;
Farnsworth, Alexander ;
Buss, Heather L. ;
Dickson, Alexander J. ;
Valdes, Paul J. ;
Lunt, Daniel J. ;
Pancost, Richard D. .
GLOBAL AND PLANETARY CHANGE, 2017, 157 :114-138
[5]   Coupled microbial bloom and oxygenation decline recorded by magnetofossils during the Palaeocene-Eocene Thermal Maximum [J].
Chang, Liao ;
Harrison, Richard J. ;
Zeng, Fan ;
Berndt, Thomas A. ;
Roberts, Andrew P. ;
Heslop, David ;
Zhao, Xiang .
NATURE COMMUNICATIONS, 2018, 9
[6]   Upper limits on the extent of seafloor anoxia during the PETM from uranium isotopes [J].
Clarkson, Matthew O. ;
Lenton, Timothy M. ;
Andersen, Morten B. ;
Bagard, Marie-Laure ;
Dickson, Alexander J. ;
Vance, Derek .
NATURE COMMUNICATIONS, 2021, 12 (01)
[7]  
Dickens GR, 1997, GEOLOGY, V25, P259, DOI 10.1130/0091-7613(1997)025<0259:ABOGIT>2.3.CO
[8]  
2
[9]   Detection of noninteracting single domain particles using first-order reversal curve diagrams [J].
Egli, Ramon ;
Chen, Amy P. ;
Winklhofer, Michael ;
Kodama, Kenneth P. ;
Horng, Chorng-Shern .
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2010, 11
[10]   Thermogenic methane release as a cause for the long duration of the PETM [J].
Frieling, Joost ;
Svensen, Henrik H. ;
Planke, Sverre ;
Cramwinckel, Margot J. ;
Selnes, Haavard ;
Sluijs, Appy .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (43) :12059-12064