Proxemics-based deep reinforcement learning for robot navigation in continuous action space

被引:2
作者
Cimurs R. [1 ]
Suh I.-H. [2 ]
机构
[1] Department of Intelligent Robot Engineering, Hanyang University
[2] Department of Electronics and Computer Engineering, Hanyang University
关键词
Deep reinforcement learning; Proxemics-based navigation; Socially aware navigation;
D O I
10.5302/J.ICROS.2020.19.0225
中图分类号
学科分类号
摘要
This paper presents a deep reinforcement learning approach to learn robot navigation in continuous action space with a motion behavior based on human proxemics. We extended a deep deterministic policy gradient network to include convolutional layers for dealing with motion over multiple timesteps. A proxemics-based cost function for the robot to obtain the desired socially aware navigation behavior was developed and implemented in the learning stage, which respects the personal and intimate space of a human. The performed experiments in the simulated and real environments exhibited the desired behavior. Furthermore, the intrusions into the proxemics zones of a human were significantly reduced compared to similar learned robot navigation approaches. © ICROS 2020.
引用
收藏
页码:168 / 176
页数:8
相关论文
共 50 条
  • [31] Target Search and Navigation in Heterogeneous Robot Systems with Deep Reinforcement Learning
    Chen, Yun
    Xiao, Jiaping
    MACHINE INTELLIGENCE RESEARCH, 2025, 22 (01) : 79 - 90
  • [32] Robot navigation in a crowd by integrating deep reinforcement learning and online planning
    Zhiqian Zhou
    Pengming Zhu
    Zhiwen Zeng
    Junhao Xiao
    Huimin Lu
    Zongtan Zhou
    Applied Intelligence, 2022, 52 : 15600 - 15616
  • [33] Experimental Research on Deep Reinforcement Learning in Autonomous navigation of Mobile Robot
    Yue, Pengyu
    Xin, Jing
    Zhao, Huan
    Liu, Ding
    Shan, Mao
    Zhang, Jian
    PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, : 1612 - 1616
  • [34] Modular deep reinforcement learning from reward and punishment for robot navigation
    Wang, Jiexin
    Elfwing, Stefan
    Uchibe, Eiji
    NEURAL NETWORKS, 2021, 135 : 115 - 126
  • [35] Robot navigation in a crowd by integrating deep reinforcement learning and online planning
    Zhou, Zhiqian
    Zhu, Pengming
    Zeng, Zhiwen
    Xiao, Junhao
    Lu, Huimin
    Zhou, Zongtan
    APPLIED INTELLIGENCE, 2022, 52 (13) : 15600 - 15616
  • [36] Deep Reinforcement Learning for Group-Aware Robot Navigation in Crowds
    Zhou, Xianwei
    Ye, Xin
    Zhang, Kun
    Yu, Songsen
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT IV, KSEM 2023, 2023, 14120 : 25 - 34
  • [37] Robot multi-action cooperative grasping strategy based on deep reinforcement learning
    He, Huiteng
    Zhou, Yong
    Hu, Kaixiong
    Li, Weidong
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2024, 30 (05): : 1789 - 1797
  • [38] Air Learning: a deep reinforcement learning gym for autonomous aerial robot visual navigation
    Krishnan, Srivatsan
    Boroujerdian, Behzad
    Fu, William
    Faust, Aleksandra
    Reddi, Vijay Janapa
    MACHINE LEARNING, 2021, 110 (09) : 2501 - 2540
  • [39] Air Learning: a deep reinforcement learning gym for autonomous aerial robot visual navigation
    Srivatsan Krishnan
    Behzad Boroujerdian
    William Fu
    Aleksandra Faust
    Vijay Janapa Reddi
    Machine Learning, 2021, 110 : 2501 - 2540
  • [40] A History-based Framework for Online Continuous Action Ensembles in Deep Reinforcement Learning
    Oliveira, Renata Garcia
    Caarls, Wouter
    ICAART: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 2, 2021, : 580 - 588