共 19 条
- [1] Deng I., Dong W., Socher R., Li L. -J., Li K., Fei-Fei L., Imagenet: A large-scale hierarchical image database, IEEE Conference on Computer Vision and Pattern Recognition, (2009)
- [2] Rahman S., Khan S., Porikli F., Zero-shot object detection: Learning to simultaneously recognize and localize novel concepts, Asian Conference on Computer Vision, (2018)
- [3] Yu F., Chen H., Wang X., Xian W., Chen Y., Liu F., Madhavan, Darrell T., BDDIOOK: A diverse driving dataset for heterogeneous multitask learning, IEEE Conference on Computer Vision and Pattern Recognition, (2020)
- [4] Lafferty J., McCallum A., Pereira F., Conditional random fields: Probabilistic models for segmenting and labeling sequence data, International Conference on Machine Learning, (2001)
- [5] Shotton J., Winn J., Rother C., Criininisi A., Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context, International Journal of Computer Vision, 81, (2009)
- [6] Long J., Shelhamer E., Darrell T., Fully convohittonal networks for semantic segmentation, IEEE Conference on Computer Vision and Pattern Recognition, (2015)
- [7] Badrinarayanan V., Kendall A., Cipolla R., Segnet: A deep convolutional encoder-decoder architecture for image segmentation, (2015)
- [8] Ronncbcrgcr O., Fischer P., Brox T., (J-net: Convolutional networks for biomedical image segmentation, International Conference on Medical Image Computing and Computer-Assisted Intervention, (2015)
- [9] Chen L. -C., Papandrcou G., Schroff F., Adam H., Rethinking atrous convolution for semantic image segmentation, (2017)
- [10] Chen L. -C., Papandreou G., Kokkinos I., Murphy K., Yuille A. L., DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected errs, IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 4, (2017)