Stability and dynamics of a spectral graph model of brain oscillations

被引:6
作者
Verma, Parul [1 ]
Nagarajan, Srikantan [1 ]
Raj, Ashish [1 ]
机构
[1] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA
基金
美国国家卫生研究院;
关键词
Brain activity; Connectomes; Magnetoencephalography; Spectral graph theory; Stability; NEURAL MASS MODEL; LARGE-SCALE BRAIN; RESTING-STATE; FUNCTIONAL CONNECTIVITY; NETWORK DYNAMICS; BLOOD-FLOW; MULTISTABILITY; ARCHITECTURE; REGIONS; MATTER;
D O I
10.1162/netn_a_00263
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We explore the stability and dynamic properties of a hierarchical, linearized, and analytic spectral graph model for neural oscillations that integrates the structural wiring of the brain. Previously, we have shown that this model can accurately capture the frequency spectra and the spatial patterns of the alpha and beta frequency bands obtained from magnetoencephalography recordings without regionally varying parameters. Here, we show that this macroscopic model based on long-range excitatory connections exhibits dynamic oscillations with a frequency in the alpha band even without any oscillations implemented at the mesoscopic level. We show that depending on the parameters, the model can exhibit combinations of damped oscillations, limit cycles, or unstable oscillations. We determined bounds on model parameters that ensure stability of the oscillations simulated by the model. Finally, we estimated time-varying model parameters to capture the temporal fluctuations in magnetoencephalography activity. We show that a dynamic spectral graph modeling framework with a parsimonious set of biophysically interpretable model parameters can thereby be employed to capture oscillatory fluctuations observed in electrophysiological data in various brain states and diseases.
引用
收藏
页码:48 / 72
页数:25
相关论文
共 96 条
[41]   Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's Disease [J].
He, Yong ;
Chen, Zhang ;
Evans, Alan .
JOURNAL OF NEUROSCIENCE, 2008, 28 (18) :4756-4766
[42]   Structural foundations of resting-state and task-based functional connectivity in the human brain [J].
Hermundstad, Ann M. ;
Bassett, Danielle S. ;
Brown, Kevin S. ;
Aminoff, Elissa M. ;
Clewett, David ;
Freeman, Scott ;
Frithsen, Amy ;
Johnson, Arianne ;
Tipper, Christine M. ;
Miller, Michael B. ;
Grafton, Scott T. ;
Carlson, Jean M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (15) :6169-6174
[43]   Predicting human resting-state functional connectivity from structural connectivity [J].
Honey, C. J. ;
Sporns, O. ;
Cammoun, L. ;
Gigandet, X. ;
Thiran, J. P. ;
Meuli, R. ;
Hagmann, P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (06) :2035-2040
[44]   ELECTROENCEPHALOGRAM AND VISUAL-EVOKED POTENTIAL GENERATION IN A MATHEMATICAL-MODEL OF COUPLED CORTICAL COLUMNS [J].
JANSEN, BH ;
RIT, VG .
BIOLOGICAL CYBERNETICS, 1995, 73 (04) :357-366
[45]   Time-varying dynamic network model for dynamic resting state functional connectivity in fMRI and MEG imaging [J].
Jiang, Fei ;
Jin, Huaqing ;
Gao, Yijing ;
Xie, Xihe ;
Cummings, Jennifer ;
Raj, Ashish ;
Nagarajan, Srikantan .
NEUROIMAGE, 2022, 254
[46]   On the nature of seizure dynamics [J].
Jirsa, Viktor K. ;
Stacey, William C. ;
Quilichini, Pascale P. ;
Ivanov, Anton I. ;
Bernard, Christophe .
BRAIN, 2014, 137 :2210-2230
[47]   Spatiotemporal forward solution of the EEG and MEG using network modeling [J].
Jirsa, VK ;
Jantzen, KJ ;
Fuchs, A ;
Kelso, JAS .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (05) :493-504
[48]   Multistability and metastability: understanding dynamic coordination in the brain [J].
Kelso, J. A. Scott .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2012, 367 (1591) :906-918
[49]  
Kondor R. I., 2002, ICML, P315
[50]   Brain States and Transitions: Insights from Computational Neuroscience [J].
Kringelbach, Morten L. ;
Deco, Gustavo .
CELL REPORTS, 2020, 32 (10)