Substrate Effects in GaN-on-Silicon RF Device Technology

被引:0
|
作者
Chandrasekar H. [1 ]
机构
[1] Department of Electrical and Computer Engineering, Ohio State University, 205 Dreese Labs, 2015 Neil Avenue, Columbus, 43210, OH
关键词
back-biasing; current collapse; dielectric loss; GaN devices; GaN-on-Silicon; highly-resistive Si substrate; parasitic channel; RF loss; temperature-dependent loss;
D O I
10.1142/S0129156419400019
中图分类号
学科分类号
摘要
The influence of the semiconducting Si substrate on the performance of GaN-on-Si RF technology is reviewed. Firstly, the formation of a parasitic conduction channel at the substrate-epitaxy interface is discussed in terms of its physical mechanism and its influence on RF loss, followed by schemes to minimize this effect. Secondly, it is shown that the presence of the parallel channel serves to backbias the III-nitride epitaxial stack and lead to current collapse even on the highly-resistive Si substrates used for RF device fabrication, analogous to GaN-on-doped Si power devices. Strategies to mitigate this issue are also presented and critically compared. Thirdly, thermal generation of carriers in Si at elevated operating temperatures leading to increased substrate loss is quantified, also followed by a discussion of possible techniques to reduce its influence on RF loss. © 2019 World Scientific Publishing Company.
引用
收藏
相关论文
共 50 条
  • [31] Substrate effects in monolithic RF transformers on silicon
    Ng, KT
    Rejaei, B
    Burghartz, JN
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2002, 50 (01) : 377 - 383
  • [32] Comb-drive GaN micro-mirror on a GaN-on-silicon platform
    Wang, Yongjin
    Sasaki, Takashi
    Wu, Tong
    Hu, Fangren
    Hane, Kazuhiro
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2011, 21 (03)
  • [33] GaN-on-Silicon Evaluation for High-Power MMIC Applications
    Pantellini, A.
    Lanzieri, C.
    Nanni, A.
    Bentini, A.
    Ciccognani, W.
    Colangeli, S.
    Limiti, E.
    HETEROSIC & WASMPE 2011, 2012, 711 : 223 - +
  • [34] Ultrathin barrier GaN-on-Silicon devices for millimeter wave applications
    Medjdoub, F.
    MICROELECTRONICS RELIABILITY, 2014, 54 (01) : 1 - 12
  • [35] Assessment of transistors based on GaN on silicon substrate in view of integration with silicon technology
    Soltani, A.
    Cordier, Y.
    Gerbedoen, J-C
    Joblot, S.
    Okada, E.
    Chmielowska, M.
    Ramdani, M. R.
    De Jaeger, J-C
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2013, 28 (09)
  • [36] Normally-off 5A/1100V GaN-on-Silicon Device for High Voltage Applications
    Boutros, K. S.
    Burnham, S.
    Wong, D.
    Shinohara, K.
    Hughes, B.
    Zehnder, D.
    McGuire, C.
    2009 IEEE INTERNATIONAL ELECTRON DEVICES MEETING, 2009, : 147 - 149
  • [37] Effects of AlGaN Back Barrier on AlN/GaN-on-Silicon High-Electron-Mobility Transistors
    Medjdoub, Farid
    Zegaoui, Malek
    Grimbert, Bertrand
    Rolland, Nathalie
    Rolland, Paul-Alain
    APPLIED PHYSICS EXPRESS, 2011, 4 (12)
  • [38] Low On-Resistance and Low Trapping Effects in 1200 V Superlattice GaN-on-Silicon Heterostructures
    Kabouche, Riad
    Abid, Idriss
    Puesche, Roland
    Derluyn, Joff
    Degroote, Stefan
    Germain, Marianne
    Tajalli, Alaleh
    Meneghini, Matteo
    Meneghesso, Gaudenzio
    Medjdoub, Farid
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2020, 217 (07):
  • [39] RF/microwave device fabrication in silicon-on-glass technology
    Nanver, L. K.
    Schellevis, H.
    Scholtes, T. L. M.
    La Spina, L.
    Lorito, G.
    Sarubbi, F.
    Gonda, V.
    Popadic, A.
    Buisman, K.
    de Vreede, L. C. N.
    Huang, C.
    Milosavljevic, S.
    Goudena, E. J. G.
    2008 26TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS, VOLS 1 AND 2, PROCEEDINGS, 2008, : 273 - 280
  • [40] Increased static RON in GaN-on-silicon power transistors under high-side operation with floating substrate conditions
    Unni, V.
    Kawai, H.
    Narayanan, E. M. S.
    ELECTRONICS LETTERS, 2015, 51 (01) : 108 - U121