A Systematic Review and Meta-Analysis of MRI Radiomics for Predicting Microvascular Invasion in Patients with Hepatocellular Carcinoma

被引:1
作者
Zhou, Hai-ying [1 ,2 ]
Cheng, Jin-mei [1 ,2 ]
Chen, Tian-wu [1 ,2 ,3 ]
Zhang, Xiao-ming [1 ,2 ]
Ou, Jing [1 ,2 ]
Cao, Jin-ming [4 ]
Li, Hong-jun [5 ]
机构
[1] North Sichuan Med Coll, Affiliated Hosp, Sichuan Key Lab Med Imaging, 1 Maoyuannan Rd, Nanchong 637000, Sichuan, Peoples R China
[2] North Sichuan Med Coll, Affiliated Hosp, Dept Radiol, 1 Maoyuannan Rd, Nanchong 637000, Sichuan, Peoples R China
[3] Chongqing Med Univ, Affiliated Hosp 2, Dept Radiol, Chongqing 400010, Peoples R China
[4] North Sichuan Med Coll, Nanchong Cent Hosp, Sch Clin Med 2, Dept Radiol, Nanchong 637000, Sichuan, Peoples R China
[5] Capital Med Univ, Beijing YouAn Hosp, Dept Radiol, 8 XiTouTiaoYouAnMenWai, Beijing 100069, Peoples R China
关键词
Radiomics; Microvascular invasion; Hepatocellular carcinoma; Magnetic resonance imaging; Systematic review; Meta-analysis; PREOPERATIVE PREDICTION; MANAGEMENT; NOMOGRAM;
D O I
10.2174/0115734056256824231204073534
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background The prediction power of MRI radiomics for microvascular invasion (MVI) in patients with hepatocellular carcinoma (HCC) remains uncertain. Objective To investigate the prediction performance of MRI radiomics for MVI in HCC. Methods Original studies focusing on preoperative prediction performance of MRI radiomics for MVI in HCC, were systematically searched from databases of PubMed, Embase, Web of Science and Cochrane Library. Radiomics quality score (RQS) and risk of bias of involved studies were evaluated. Meta-analysis was carried out to demonstrate the value of MRI radiomics for MVI prediction in HCC. Influencing factors of the prediction performance of MRI radiomics were identified by subgroup analyses. Results 13 studies classified as type 2a or above according to the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis statement were eligible for this systematic review and meta-analysis. The studies achieved an average RQS of 14 (ranging from 11 to 17), accounting for 38.9% of the total points. MRI radiomics achieved a pooled sensitivity of 0.82 (95%CI: 0.78 - 0.86), specificity of 0.79 (95%CI: 0.76 - 0.83) and area under the summary receiver operator characteristic curve (AUC) of 0.88 (95%CI: 0.84 - 0.91) to predict MVI in HCC. Radiomics models combined with clinical features achieved superior performances compared to models without the combination (AUC: 0.90 vs 0.85, P < 0.05). Conclusion MRI radiomics has the potential for preoperative prediction of MVI in HCC. Further studies with high methodological quality should be designed to improve the reliability and reproducibility of the radiomics models for clinical application. The systematic review and meta-analysis was registered prospectively in the International Prospective Register of Systematic Reviews (No. CRD42022333822).
引用
收藏
页数:11
相关论文
共 41 条
[1]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.1016/j.jclinepi.2014.11.010, 10.7326/M14-0697, 10.1002/bjs.9736, 10.1016/j.eururo.2014.11.025, 10.7326/M14-0698, 10.1038/bjc.2014.639, 10.1136/bmj.g7594, 10.1186/s12916-014-0241-z, 10.1111/eci.12376]
[2]   Considerable effects of imaging sequences, feature extraction, feature selection, and classifiers on radiomics-based prediction of microvascular invasion in hepatocellular carcinoma using magnetic resonance imaging [J].
Dai, Houjiao ;
Lu, Minhua ;
Huang, Bingsheng ;
Tang, Mimi ;
Pang, Tiantian ;
Liao, Bing ;
Cai, Huasong ;
Huang, Mengqi ;
Zhou, Yongjin ;
Chen, Xin ;
Ding, Huijun ;
Feng, Shi-Ting .
QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2021, 11 (05) :1836-1853
[3]   Prognostic and Therapeutic Implications of Microvascular Invasion in Hepatocellular Carcinoma [J].
Erstad, Derek J. ;
Tanabe, Kenneth K. .
ANNALS OF SURGICAL ONCOLOGY, 2019, 26 (05) :1474-1493
[4]   Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI [J].
Feng, Shi-Ting ;
Jia, Yingmei ;
Liao, Bing ;
Huang, Bingsheng ;
Zhou, Qian ;
Li, Xin ;
Wei, Kaikai ;
Chen, Lili ;
Li, Bin ;
Wang, Wei ;
Chen, Shuling ;
He, Xiaofang ;
Wang, Haibo ;
Peng, Sui ;
Chen, Ze-Bin ;
Tang, Mimi ;
Chen, Zhihang ;
Hou, Yang ;
Peng, Zhenwei ;
Kuang, Ming .
EUROPEAN RADIOLOGY, 2019, 29 (09) :4648-4659
[5]   Approaches to Regularized Regression - A Comparison between Gradient Boosting and the Lasso [J].
Hepp, Tobias ;
Schmid, Matthias ;
Gefeller, Olaf ;
Waldmann, Elisabeth ;
Mayr, Andreas .
METHODS OF INFORMATION IN MEDICINE, 2016, 55 (05) :422-430
[6]   MRI Features for Predicting Microvascular Invasion of Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis [J].
Hong, Seung Baek ;
Choi, Sang Hyun ;
Kim, So Yeon ;
Shim, Ju Hyun ;
Lee, Seung Soo ;
Byun, Jae Ho ;
Park, Seong Ho ;
Kim, Kyung Won ;
Kim, Suk ;
Lee, Nam Kyung .
LIVER CANCER, 2021, 10 (02) :94-106
[7]   Preoperative Prediction of Microvascular Invasion Risk Grades in Hepatocellular Carcinoma Based on Tumor and Peritumor Dual-Region Radiomics Signatures [J].
Hu, Fang ;
Zhang, Yuhan ;
Li, Man ;
Liu, Chen ;
Zhang, Handan ;
Li, Xiaoming ;
Liu, Sanyuan ;
Hu, Xiaofei ;
Wang, Jian .
FRONTIERS IN ONCOLOGY, 2022, 12
[8]   Multiparametric MRI-based radiomics for the prediction of microvascular invasion in hepatocellular carcinoma [J].
Jiang, Tao ;
He, Shuai ;
Yang, Huazhe ;
Dong, Yue ;
Yu, Tao ;
Luo, Yahong ;
Jiang, Xiran .
ACTA RADIOLOGICA, 2023, 64 (02) :456-466
[9]   Radiomics: the bridge between medical imaging and personalized medicine [J].
Lambin, Philippe ;
Leijenaar, Ralph T. H. ;
Deist, Timo M. ;
Peerlings, Jurgen ;
de Jong, Evelyn E. C. ;
van Timmeren, Janita ;
Sanduleanu, Sebastian ;
Larue, Ruben T. H. M. ;
Even, Aniek J. G. ;
Jochems, Arthur ;
van Wijk, Yvonka ;
Woodruff, Henry ;
van Soest, Johan ;
Lustberg, Tim ;
Roelofs, Erik ;
van Elmpt, Wouter ;
Dekker, Andre ;
Mottaghy, Felix M. ;
Wildberger, Joachim E. ;
Walsh, Sean .
NATURE REVIEWS CLINICAL ONCOLOGY, 2017, 14 (12) :749-762
[10]   Preoperative prediction of microvascular invasion in hepatocellular carcinoma: a radiomic nomogram based on MRI [J].
Li, L. ;
Su, Q. ;
Yang, H. .
CLINICAL RADIOLOGY, 2022, 77 (04) :E269-E279